fix sampling bugs

This commit is contained in:
shahules786 2022-08-23 13:33:46 +05:30
parent 54a4364fb9
commit 65540148f7
1 changed files with 43 additions and 20 deletions

View File

@ -1,18 +1,37 @@
import glob
import math
import numpy as np
import os
from scipy.io import wavfile
from torch.utils.data import IterableDataset
import torch.nn.functional as F
from enhancer.utils.random import create_unique_rng
from enhancer.utils.io import Audio
class VctkDataset:
def __init__(self):
pass
def train_loader(self):
pass
def valid_loader(self):
pass
def test_loader(self):
pass
class Vctk(IterableDataset):
"""Dataset object for Voice Bank Corpus (VCTK) Dataset"""
def __init__(self,clean_path,noisy_path,duration=1,sampling_rate=16000,num_samples=None):
def __init__(self,clean_path,noisy_path,duration=1.0,sampling_rate=48000):
if not os.path.isdir(clean_path):
raise ValueError(f"{clean_path} is not a valid directory")
@ -23,46 +42,50 @@ class Vctk(IterableDataset):
self.sampling_rate = sampling_rate
self.clean_path = clean_path
self.noisy_path = noisy_path
self.wav_samples =[file.split('/')[-1] for file in glob.glob(os.path.join(clean_path,"*.wav"))]
if num_samples is None:
self.num_samples = len(self.wav_samples)
else:
self.num_samples = num_samples
self.files_duration = self.get_matching_files_duration()
self.wav_samples = list(self.files_duration.keys())
self.duration = max(1.0,duration)
self.audio = Audio(self.sampling_rate,mono=True,return_tensor=True)
self.files_duration = self.get_files_duration()
def get_file_duration(self):
def get_matching_files_duration(self):
files_duration = {}
for file in self.clean_path:
wavfile = wavfile.read(os.path.join(self.clean_path,file),rate=self.sampling_rate)
files_duration.update({file:math.ceil(wavfile/self.sampling_rate)})
matching_wavfiles_dur = dict()
clean_filenames = [file.split('/')[-1] for file in glob.glob(os.path.join(self.clean_path,"*.wav"))]
noisy_filenames = [file.split('/')[-1] for file in glob.glob(os.path.join(self.noisy_path,"*.wav"))]
common_filenames = np.intersect1d(noisy_filenames,clean_filenames)
return files_duration
for file_name in common_filenames:
sr_clean, clean_file = wavfile.read(os.path.join(self.clean_path,file_name))
sr_noisy, noisy_file = wavfile.read(os.path.join(self.noisy_path,file_name))
if ((clean_file.shape[-1]==noisy_file.shape[-1]) and
(sr_clean==self.sampling_rate) and
(sr_noisy==self.sampling_rate)):
matching_wavfiles_dur.update({file_name:(clean_file.shape[-1]/self.sampling_rate)})
return matching_wavfiles_dur
def __iter__(self):
rng = create_unique_rng(12) ##pass epoch number here
while True:
file_name = rng.choices(self.wav_samples,k=1)
file_name,*_ = rng.choices(self.wav_samples,k=1,
weights=[self.files_duration[file] for file in self.wav_samples])
file_duration = self.files_duration.get(file_name)
start_time = rng.randint(0,math.ceil(file_duration- self.duration))
start_time = round(rng.uniform(0,file_duration- self.duration),2)
data = self.prepare_segment(file_name,start_time)
yield data
def prepare_segment(self,file_name:str, start_time:int):
def prepare_segment(self,file_name:str, start_time:float):
clean_segment = self.audio(os.path.join(self.clean_path,file_name),
offset=start_time,duration=self.duration)
noisy_segment = self.audio(os.path.join(self.noisy_path,file_name),
offset=start_time,duration=self.duration)
clean_segment = F.pad(clean_segment,(0,int(self.duration*self.sampling_rate-clean_segment.shape[-1])))
noisy_segment = F.pad(noisy_segment,(0,int(self.duration*self.sampling_rate-noisy_segment.shape[-1])))
return {"clean": clean_segment,"noisy":noisy_segment}
def __len__(self):