97 lines
		
	
	
		
			3.3 KiB
		
	
	
	
		
			Python
		
	
	
	
			
		
		
	
	
			97 lines
		
	
	
		
			3.3 KiB
		
	
	
	
		
			Python
		
	
	
	
| 
 | |
| import glob
 | |
| import math
 | |
| import numpy as np
 | |
| import os
 | |
| from scipy.io import wavfile
 | |
| from torch.utils.data import IterableDataset
 | |
| import torch.nn.functional as F
 | |
| 
 | |
| from enhancer.utils.random import create_unique_rng
 | |
| from enhancer.utils.io import Audio
 | |
| 
 | |
| 
 | |
| 
 | |
| class VctkDataset:
 | |
| 
 | |
|     def __init__(self):
 | |
|         pass
 | |
| 
 | |
|     def train_loader(self):
 | |
|         pass
 | |
| 
 | |
|     def valid_loader(self):
 | |
|         pass
 | |
| 
 | |
|     def test_loader(self):
 | |
|         pass
 | |
| 
 | |
| 
 | |
| 
 | |
| class Vctk(IterableDataset):
 | |
|     """Dataset object for Voice Bank Corpus (VCTK) Dataset"""
 | |
| 
 | |
|     def __init__(self,clean_path,noisy_path,duration=1.0,sampling_rate=48000):
 | |
|         
 | |
|         if not os.path.isdir(clean_path):
 | |
|             raise ValueError(f"{clean_path} is not a valid directory")
 | |
| 
 | |
|         if not os.path.isdir(noisy_path):
 | |
|             raise ValueError(f"{clean_path} is not a valid directory")
 | |
| 
 | |
|         self.sampling_rate = sampling_rate
 | |
|         self.clean_path = clean_path
 | |
|         self.noisy_path = noisy_path
 | |
|         self.files_duration = self.get_matching_files_duration()
 | |
|         self.wav_samples = list(self.files_duration.keys())
 | |
|         self.duration = max(1.0,duration)
 | |
|         self.audio = Audio(self.sampling_rate,mono=True,return_tensor=True)
 | |
| 
 | |
|     def get_matching_files_duration(self):
 | |
| 
 | |
|         matching_wavfiles_dur = dict()
 | |
|         clean_filenames = [file.split('/')[-1] for file in glob.glob(os.path.join(self.clean_path,"*.wav"))]
 | |
|         noisy_filenames = [file.split('/')[-1] for file in glob.glob(os.path.join(self.noisy_path,"*.wav"))]
 | |
|         common_filenames = np.intersect1d(noisy_filenames,clean_filenames)
 | |
| 
 | |
|         for file_name in common_filenames:
 | |
| 
 | |
|              sr_clean, clean_file = wavfile.read(os.path.join(self.clean_path,file_name))
 | |
|              sr_noisy, noisy_file = wavfile.read(os.path.join(self.noisy_path,file_name))
 | |
|              if ((clean_file.shape[-1]==noisy_file.shape[-1]) and 
 | |
|                     (sr_clean==self.sampling_rate) and 
 | |
|                         (sr_noisy==self.sampling_rate)):
 | |
|                 matching_wavfiles_dur.update({file_name:(clean_file.shape[-1]/self.sampling_rate)})
 | |
| 
 | |
|         return matching_wavfiles_dur
 | |
| 
 | |
|     def __iter__(self):
 | |
| 
 | |
|         rng = create_unique_rng(12) ##pass epoch number here
 | |
|         
 | |
|         while True:
 | |
| 
 | |
|             file_name,*_ = rng.choices(self.wav_samples,k=1,
 | |
|                         weights=[self.files_duration[file] for file in self.wav_samples])
 | |
|             file_duration = self.files_duration.get(file_name)
 | |
|             start_time = round(rng.uniform(0,file_duration- self.duration),2)
 | |
|             data = self.prepare_segment(file_name,start_time)
 | |
|             yield data
 | |
| 
 | |
|     def prepare_segment(self,file_name:str, start_time:float):
 | |
| 
 | |
|         clean_segment = self.audio(os.path.join(self.clean_path,file_name),
 | |
|                                     offset=start_time,duration=self.duration)
 | |
|         noisy_segment = self.audio(os.path.join(self.noisy_path,file_name),
 | |
|                                     offset=start_time,duration=self.duration)
 | |
|         clean_segment = F.pad(clean_segment,(0,int(self.duration*self.sampling_rate-clean_segment.shape[-1])))
 | |
|         noisy_segment = F.pad(noisy_segment,(0,int(self.duration*self.sampling_rate-noisy_segment.shape[-1])))
 | |
|         return {"clean": clean_segment,"noisy":noisy_segment}
 | |
|         
 | |
|     def __len__(self):
 | |
| 
 | |
|         return math.ceil(sum(self.files_duration.values())/self.duration)
 | |
| 
 | |
| 
 | |
|         
 |