vctk dataset
This commit is contained in:
parent
bcbc82dbad
commit
54a4364fb9
|
|
@ -1,15 +1,18 @@
|
|||
|
||||
from genericpath import isdir
|
||||
import librosa
|
||||
import glob
|
||||
import math
|
||||
import os
|
||||
from scipy.io import wavfile
|
||||
from torch.utils.data import IterableDataset
|
||||
import torch
|
||||
|
||||
from enhancer.utils.random import create_unique_rng
|
||||
from enhancer.utils.io import Audio
|
||||
|
||||
|
||||
class Vctk(IterableDataset):
|
||||
"""Dataset object for Voice Bank Corpus (VCTK) Dataset"""
|
||||
|
||||
def __init__(self,clean_path,noisy_path,sample_length=1,num_samples=None):
|
||||
def __init__(self,clean_path,noisy_path,duration=1,sampling_rate=16000,num_samples=None):
|
||||
|
||||
if not os.path.isdir(clean_path):
|
||||
raise ValueError(f"{clean_path} is not a valid directory")
|
||||
|
|
@ -17,22 +20,54 @@ class Vctk(IterableDataset):
|
|||
if not os.path.isdir(noisy_path):
|
||||
raise ValueError(f"{clean_path} is not a valid directory")
|
||||
|
||||
self.sampling_rate = sampling_rate
|
||||
self.clean_path = clean_path
|
||||
self.noisy_path = noisy_path
|
||||
self.wav_samples =[file.split('/')[-1] for file in glob.glob(os.path.join(clean_path,"*.wav"))]
|
||||
|
||||
if num_samples is None:
|
||||
self.num_samples = len([file for file in os.listdir(clean_path) if file.endswith(".wav")])
|
||||
self.num_samples = len(self.wav_samples)
|
||||
else:
|
||||
self.num_samples = num_samples
|
||||
|
||||
self.sample_length = max(0.1,sample_length)
|
||||
self.duration = max(1.0,duration)
|
||||
self.audio = Audio(self.sampling_rate,mono=True,return_tensor=True)
|
||||
self.files_duration = self.get_files_duration()
|
||||
|
||||
def get_file_duration(self):
|
||||
|
||||
files_duration = {}
|
||||
for file in self.clean_path:
|
||||
wavfile = wavfile.read(os.path.join(self.clean_path,file),rate=self.sampling_rate)
|
||||
files_duration.update({file:math.ceil(wavfile/self.sampling_rate)})
|
||||
|
||||
return files_duration
|
||||
|
||||
|
||||
def __iter__(self):
|
||||
|
||||
rng = create_unique_rng(12) ##pass epoch number here
|
||||
|
||||
while True:
|
||||
|
||||
file_name = rng.choices(self.wav_samples,k=1)
|
||||
file_duration = self.files_duration.get(file_name)
|
||||
start_time = rng.randint(0,math.ceil(file_duration- self.duration))
|
||||
data = self.prepare_segment(file_name,start_time)
|
||||
yield data
|
||||
|
||||
def prepare_segment(self,file_name:str, start_time:int):
|
||||
|
||||
clean_segment = self.audio(os.path.join(self.clean_path,file_name),
|
||||
offset=start_time,duration=self.duration)
|
||||
noisy_segment = self.audio(os.path.join(self.noisy_path,file_name),
|
||||
offset=start_time,duration=self.duration)
|
||||
|
||||
return {"clean": clean_segment,"noisy":noisy_segment}
|
||||
|
||||
|
||||
|
||||
pass
|
||||
|
||||
def __len__(self):
|
||||
pass
|
||||
|
||||
return math.ceil(sum(self.files_duration.values())/self.duration)
|
||||
|
||||
|
||||
|
||||
|
|
|
|||
Loading…
Reference in New Issue