Allows you to overlay a carrier wave on the RF Signal - in practice this is only used for IR signals (not RF). Automatically scales frequency to account for 80x difference between APB Clock and Ref Tick Clock depending on which is used. Checks to ensure resulting parameters (high period and low period) are all in bounds (0,65536) and reports an error if they are not.
Added second argument to RFControl(uint8_t pin, boolean refClock=true) to allow choice of Ref Tick (1 MHz) clock or APB (80 MHz) clock. Default is to use 1 MHz Ref Tick.
Also fixed bug in logic that divides clock for ESP32-C3. Factor should be 79, not 80, since divider is apparently configured to divide by factor+1.
Instead of limiting number of ticks to 15-bits (32767), RFControl allows for tick size to be any 32-bit number. If ticks > 32767, RFControl adds repeated LOW or HIGH phases as needed to match full duration. This provides for much more flexibility in creating pulse trains that include very long-duration "spaces" between repeats.
Testing completed for RFControl and PWM on all three ESP32 chip types.
To Do: update RFControl documentation to include total number of usable channels per chip, as well as the alternate version of start();
PWM has now been fully tested and verified with an ESP32 device under Arduino-ESP32 versions 1.0.6 and 2.0.0, and with an ESP32-S2 device under Arduino-ESP32 version 2.0.0. Tests confirmed using both high (5000 Hz) and low (1 Hz or 5Hz) frequencies to ensure timers are correctly configured.
Next Task: Update RFControl routines for 2.0.0 and ESP32-S2 compatibility.
Accounts for new *required* elements of the LEDC channel and timer structures to be set in later versions of the IDF. These elements are not available in earlier versions of the IDF and the program can't be compiled unless ignored.
New IDF parameter in 2.0.0 for LEDC allows PWM signal to be inverted! Need to ensure flags.output_inverted is set to 0!
Also: Deleted old PWM class, which was saved for backwards compatibility. This "breaks" HomeSpan for those using the old PWM class (instead of LedPin).
Also: Added checks to ensure that frequency is achievable (for S2 and C3, the 14-bit duty resolution is insufficient to allow frequencies slower than 5 Hz - this is not a practical limit when using LedPin to drive actual LEDs and lights).
Should now work with ESP32-S2 and C3. Allows for as many LEDs and Servos as there are channels and timers across low and high (esp32 only) modes. Allows LED to be set with floating point precession instead of just uint8. Allows specification of LED frequency for each LED (1-65535 Hz). Automatically provides maximum duty resolution for frequency chosen.
Greatly simplifies use interface. No need to specify or save channels. And no need to even save pin number since that can be found using LedPin->getPin() method whenever needed.
Both classes check that total number of combined instantiations does not exceed 16. ServoPin() has additional limit of only 8 instantiations.
DEPRECATED: PwmPin(). Keep for backwards compatibility only.
TO DO: Update Tutorial Examples to replace PwmPin with LedPin, and update Extras.h documentations with LedPin and ServoPin.
This is a replacement for PwmPin(). It keeps track of channel numbers internally, which greatly simplifies the user interface. Starts by using the 8 Low Speed Timer channels and then moves to the 8 High Speed Timer channels if more than 8 LedPins are instantiated. Throws a non-fatal error if more than 16 LedPins are instantiated, and ignores any attempts to set the duty cycle of those channels.
Removed need to include channel number in set() method. Why was this ever there? Need to update Examples and PwmPin docs. But keep stub method that includes channel for backwards compatibility.
RFControl::phase() allows you to add either a HIGH or LOW entry (i.e. a single phase of a pulse. RFControl::add() continues to add a full HIGH/LOW pulse so these changes are fully backwards compatible.
Instead of pre-defining RF433 and RF315, the user should define their own RFControl{pin} as a variable in their device-specific DEV_*.h file. Makes RFControl more generic and not specific to any transmitter name (such as 433 or 315). Also means that the pin can be set by the user instead of having to modify RFControl.h deep in the library.
Transtioned to all getter methods: getVal(), getNewVal(), updated(), using templates for all floats.
Finalized templates for getVal and getNewVal, including making <int> default so it does not have to be set for most getVal() and getNewVal() calls. Works for booleans as well. TO DO: Re-work and check ALL prior examples to ensure they use getVal, etc., and DON'T access value, newValue, isUpdated, directly.