26 lines
		
	
	
		
			729 B
		
	
	
	
		
			Python
		
	
	
	
			
		
		
	
	
			26 lines
		
	
	
		
			729 B
		
	
	
	
		
			Python
		
	
	
	
| import pytest
 | |
| import torch
 | |
| import numpy as np
 | |
| 
 | |
| from enhancer.inference import Inference
 | |
| 
 | |
| 
 | |
| @pytest.mark.parametrize("audio",["tests/data/vctk/clean_testset_wav/p257_166.wav",torch.rand(1,2,48000)])
 | |
| def test_read_input(audio):
 | |
| 
 | |
|     read_audio = Inference.read_input(audio,48000,16000)
 | |
|     assert isinstance(read_audio,torch.Tensor)
 | |
|     assert read_audio.shape[0] == 1
 | |
| 
 | |
| def test_batchify():
 | |
|     rand = torch.rand(1,1000)
 | |
|     batched_rand = Inference.batchify(rand, window_size = 100, step_size=100)
 | |
|     assert batched_rand.shape[0] == 12
 | |
| 
 | |
| def test_aggregate():
 | |
|     rand = torch.rand(12,1,100)
 | |
|     agg_rand = Inference.aggreagate(data=rand,window_size=100,total_frames=1000,step_size=100)
 | |
|     assert agg_rand.shape[-1] == 1000
 | |
| 
 | |
| 
 | |
|      |