32 lines
		
	
	
		
			852 B
		
	
	
	
		
			Python
		
	
	
	
			
		
		
	
	
			32 lines
		
	
	
		
			852 B
		
	
	
	
		
			Python
		
	
	
	
| from asyncio import base_tasks
 | |
| import torch
 | |
| import pytest
 | |
| 
 | |
| from enhancer.loss import mean_absolute_error, mean_squared_error
 | |
| 
 | |
| loss_functions = [mean_absolute_error(), mean_squared_error()]
 | |
| 
 | |
| def check_loss_shapes_compatibility(loss_fun):
 | |
| 
 | |
|     batch_size = 4
 | |
|     shape = (1,1000)
 | |
|     loss_fun(torch.rand(batch_size,*shape),torch.rand(batch_size,*shape))
 | |
| 
 | |
|     with pytest.raises(TypeError):
 | |
|         loss_fun(torch.rand(4,*shape),torch.rand(6,*shape))
 | |
| 
 | |
| 
 | |
| @pytest.mark.parametrize("loss",loss_functions)
 | |
| def test_loss_input_shapes(loss):
 | |
|     check_loss_shapes_compatibility(loss)
 | |
| 
 | |
| @pytest.mark.parametrize("loss",loss_functions)
 | |
| def test_loss_output_type(loss):
 | |
| 
 | |
|     batch_size = 4
 | |
|     prediction, target = torch.rand(batch_size,1,1000),torch.rand(batch_size,1,1000)
 | |
|     loss_value = loss(prediction, target)
 | |
|     assert isinstance(loss_value.item(),float)
 | |
| 
 | |
| 
 |