221 lines
6.6 KiB
Python
221 lines
6.6 KiB
Python
import math
|
|
import multiprocessing
|
|
import os
|
|
from typing import Optional
|
|
|
|
import pytorch_lightning as pl
|
|
import torch.nn.functional as F
|
|
from torch.utils.data import DataLoader, Dataset, IterableDataset
|
|
|
|
from enhancer.data.fileprocessor import Fileprocessor
|
|
from enhancer.utils import check_files
|
|
from enhancer.utils.config import Files
|
|
from enhancer.utils.io import Audio
|
|
from enhancer.utils.random import create_unique_rng
|
|
|
|
|
|
class TrainDataset(IterableDataset):
|
|
def __init__(self, dataset):
|
|
self.dataset = dataset
|
|
|
|
def __iter__(self):
|
|
return self.dataset.train__iter__()
|
|
|
|
def __len__(self):
|
|
return self.dataset.train__len__()
|
|
|
|
|
|
class ValidDataset(Dataset):
|
|
def __init__(self, dataset):
|
|
self.dataset = dataset
|
|
|
|
def __getitem__(self, idx):
|
|
return self.dataset.val__getitem__(idx)
|
|
|
|
def __len__(self):
|
|
return self.dataset.val__len__()
|
|
|
|
|
|
class TaskDataset(pl.LightningDataModule):
|
|
def __init__(
|
|
self,
|
|
name: str,
|
|
root_dir: str,
|
|
files: Files,
|
|
duration: float = 1.0,
|
|
sampling_rate: int = 48000,
|
|
matching_function=None,
|
|
batch_size=32,
|
|
num_workers: Optional[int] = None,
|
|
):
|
|
super().__init__()
|
|
|
|
self.name = name
|
|
self.files, self.root_dir = check_files(root_dir, files)
|
|
self.duration = duration
|
|
self.sampling_rate = sampling_rate
|
|
self.batch_size = batch_size
|
|
self.matching_function = matching_function
|
|
self._validation = []
|
|
if num_workers is None:
|
|
num_workers = multiprocessing.cpu_count() // 2
|
|
self.num_workers = num_workers
|
|
|
|
def setup(self, stage: Optional[str] = None):
|
|
|
|
if stage in ("fit", None):
|
|
|
|
train_clean = os.path.join(self.root_dir, self.files.train_clean)
|
|
train_noisy = os.path.join(self.root_dir, self.files.train_noisy)
|
|
fp = Fileprocessor.from_name(
|
|
self.name, train_clean, train_noisy, self.matching_function
|
|
)
|
|
self.train_data = fp.prepare_matching_dict()
|
|
|
|
val_clean = os.path.join(self.root_dir, self.files.test_clean)
|
|
val_noisy = os.path.join(self.root_dir, self.files.test_noisy)
|
|
fp = Fileprocessor.from_name(
|
|
self.name, val_clean, val_noisy, self.matching_function
|
|
)
|
|
val_data = fp.prepare_matching_dict()
|
|
|
|
for item in val_data:
|
|
clean, noisy, total_dur = item.values()
|
|
if total_dur < self.duration:
|
|
continue
|
|
num_segments = round(total_dur / self.duration)
|
|
for index in range(num_segments):
|
|
start_time = index * self.duration
|
|
self._validation.append(
|
|
({"clean": clean, "noisy": noisy}, start_time)
|
|
)
|
|
|
|
def train_dataloader(self):
|
|
return DataLoader(
|
|
TrainDataset(self),
|
|
batch_size=self.batch_size,
|
|
num_workers=self.num_workers,
|
|
)
|
|
|
|
def val_dataloader(self):
|
|
return DataLoader(
|
|
ValidDataset(self),
|
|
batch_size=self.batch_size,
|
|
num_workers=self.num_workers,
|
|
)
|
|
|
|
|
|
class EnhancerDataset(TaskDataset):
|
|
"""
|
|
Dataset object for creating clean-noisy speech enhancement datasets
|
|
paramters:
|
|
name : str
|
|
name of the dataset
|
|
root_dir : str
|
|
root directory of the dataset containing clean/noisy folders
|
|
files : Files
|
|
dataclass containing train_clean, train_noisy, test_clean, test_noisy
|
|
folder names (refer enhancer.utils.Files dataclass)
|
|
duration : float
|
|
expected audio duration of single audio sample for training
|
|
sampling_rate : int
|
|
desired sampling rate
|
|
batch_size : int
|
|
batch size of each batch
|
|
num_workers : int
|
|
num workers to be used while training
|
|
matching_function : str
|
|
maching functions - (one_to_one,one_to_many). Default set to None.
|
|
use one_to_one mapping for datasets with one noisy file for each clean file
|
|
use one_to_many mapping for multiple noisy files for each clean file
|
|
|
|
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
name: str,
|
|
root_dir: str,
|
|
files: Files,
|
|
duration=1.0,
|
|
sampling_rate=48000,
|
|
matching_function=None,
|
|
batch_size=32,
|
|
num_workers: Optional[int] = None,
|
|
):
|
|
|
|
super().__init__(
|
|
name=name,
|
|
root_dir=root_dir,
|
|
files=files,
|
|
sampling_rate=sampling_rate,
|
|
duration=duration,
|
|
matching_function=matching_function,
|
|
batch_size=batch_size,
|
|
num_workers=num_workers,
|
|
)
|
|
|
|
self.sampling_rate = sampling_rate
|
|
self.files = files
|
|
self.duration = max(1.0, duration)
|
|
self.audio = Audio(self.sampling_rate, mono=True, return_tensor=True)
|
|
|
|
def setup(self, stage: Optional[str] = None):
|
|
|
|
super().setup(stage=stage)
|
|
|
|
def train__iter__(self):
|
|
|
|
rng = create_unique_rng(self.model.current_epoch)
|
|
|
|
while True:
|
|
|
|
file_dict, *_ = rng.choices(
|
|
self.train_data,
|
|
k=1,
|
|
weights=[file["duration"] for file in self.train_data],
|
|
)
|
|
file_duration = file_dict["duration"]
|
|
start_time = round(rng.uniform(0, file_duration - self.duration), 2)
|
|
data = self.prepare_segment(file_dict, start_time)
|
|
yield data
|
|
|
|
def val__getitem__(self, idx):
|
|
return self.prepare_segment(*self._validation[idx])
|
|
|
|
def prepare_segment(self, file_dict: dict, start_time: float):
|
|
|
|
clean_segment = self.audio(
|
|
file_dict["clean"], offset=start_time, duration=self.duration
|
|
)
|
|
noisy_segment = self.audio(
|
|
file_dict["noisy"], offset=start_time, duration=self.duration
|
|
)
|
|
clean_segment = F.pad(
|
|
clean_segment,
|
|
(
|
|
0,
|
|
int(
|
|
self.duration * self.sampling_rate - clean_segment.shape[-1]
|
|
),
|
|
),
|
|
)
|
|
noisy_segment = F.pad(
|
|
noisy_segment,
|
|
(
|
|
0,
|
|
int(
|
|
self.duration * self.sampling_rate - noisy_segment.shape[-1]
|
|
),
|
|
),
|
|
)
|
|
return {"clean": clean_segment, "noisy": noisy_segment}
|
|
|
|
def train__len__(self):
|
|
return math.ceil(
|
|
sum([file["duration"] for file in self.train_data]) / self.duration
|
|
)
|
|
|
|
def val__len__(self):
|
|
return len(self._validation)
|