47 lines
		
	
	
		
			1.4 KiB
		
	
	
	
		
			Python
		
	
	
	
			
		
		
	
	
			47 lines
		
	
	
		
			1.4 KiB
		
	
	
	
		
			Python
		
	
	
	
| from logging import root
 | |
| import pytest
 | |
| import torch
 | |
| import numpy as np
 | |
| 
 | |
| from enhancer.utils.io import Audio
 | |
| from enhancer.utils.config import Files
 | |
| from enhancer.utils.fileprocessor import Fileprocessor
 | |
| 
 | |
| def test_io_channel():
 | |
| 
 | |
|     input_audio = np.random.rand(2,32000)
 | |
|     audio = Audio(mono=True,return_tensor=False)
 | |
|     output_audio = audio(input_audio)
 | |
|     assert output_audio.shape[0] == 1
 | |
| 
 | |
| def test_io_resampling():
 | |
| 
 | |
|     input_audio = np.random.rand(1,32000)
 | |
|     resampled_audio = Audio.resample_audio(input_audio,16000,8000)
 | |
| 
 | |
|     input_audio = torch.rand(1,32000)
 | |
|     resampled_audio_pt = Audio.pt_resample_audio(input_audio,16000,8000)
 | |
| 
 | |
|     assert resampled_audio.shape[1] == resampled_audio_pt.size(1) == 16000
 | |
| 
 | |
| def test_fileprocessor_vctk():
 | |
| 
 | |
|     fp = Fileprocessor.from_name("vctk","tests/data/vctk/clean_testset_wav",
 | |
|                                 "tests/data/vctk/noisy_testset_wav",48000)
 | |
|     matching_dict = fp.prepare_matching_dict()
 | |
|     assert len(matching_dict)==2
 | |
| 
 | |
| @pytest.mark.parametrize("dataset_name",["vctk","dns-2020"])
 | |
| def test_fileprocessor_names(dataset_name):
 | |
|      fp = Fileprocessor.from_name(dataset_name,"clean_dir","noisy_dir",16000)
 | |
|      assert hasattr(fp.matching_function, '__call__')
 | |
| 
 | |
| def test_fileprocessor_invaliname():
 | |
|     with pytest.raises(ValueError):
 | |
|         fp = Fileprocessor.from_name("undefined","clean_dir","noisy_dir",16000).prepare_matching_dict()
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 |