154 lines
4.6 KiB
Python
154 lines
4.6 KiB
Python
from tkinter import wantobjects
|
|
import wave
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
from typing import Optional, Union, List
|
|
|
|
from enhancer.models.model import Model
|
|
from enhancer.data.dataset import EnhancerDataset
|
|
|
|
class WavenetDecoder(nn.Module):
|
|
|
|
def __init__(
|
|
self,
|
|
in_channels:int,
|
|
out_channels:int,
|
|
kernel_size:int=5,
|
|
padding:int=2,
|
|
stride:int=1,
|
|
dilation:int=1,
|
|
):
|
|
super(WavenetDecoder,self).__init__()
|
|
self.decoder = nn.Sequential(
|
|
nn.Conv1d(in_channels,out_channels,kernel_size,stride=stride,padding=padding,dilation=dilation),
|
|
nn.BatchNorm1d(out_channels),
|
|
nn.LeakyReLU(negative_slope=0.1)
|
|
)
|
|
|
|
def forward(self,waveform):
|
|
|
|
return self.decoder(waveform)
|
|
|
|
class WavenetEncoder(nn.Module):
|
|
|
|
def __init__(
|
|
self,
|
|
in_channels:int,
|
|
out_channels:int,
|
|
kernel_size:int=15,
|
|
padding:int=7,
|
|
stride:int=1,
|
|
dilation:int=1,
|
|
):
|
|
super(WavenetEncoder,self).__init__()
|
|
self.encoder = nn.Sequential(
|
|
nn.Conv1d(in_channels,out_channels,kernel_size,stride=stride,padding=padding,dilation=dilation),
|
|
nn.BatchNorm1d(out_channels),
|
|
nn.LeakyReLU(negative_slope=0.1)
|
|
)
|
|
|
|
|
|
def forward(
|
|
self,
|
|
waveform
|
|
):
|
|
return self.encoder(waveform)
|
|
|
|
|
|
class WaveUnet(Model):
|
|
|
|
def __init__(
|
|
self,
|
|
num_channels:int=1,
|
|
depth:int=12,
|
|
initial_output_channels:int=24,
|
|
sampling_rate:int=16000,
|
|
lr:float=1e-3,
|
|
dataset:Optional[EnhancerDataset]=None,
|
|
duration:Optional[float]=None,
|
|
loss: Union[str, List] = "mse",
|
|
metric:Union[str,List] = "mse"
|
|
):
|
|
duration = dataset.duration if isinstance(dataset,EnhancerDataset) else None
|
|
sampling_rate = sampling_rate if dataset is None else dataset.sampling_rate
|
|
super().__init__(num_channels=num_channels,
|
|
sampling_rate=sampling_rate,lr=lr,
|
|
dataset=dataset,duration=duration,loss=loss, metric=metric
|
|
)
|
|
self.save_hyperparameters("depth")
|
|
self.encoders = nn.ModuleList()
|
|
self.decoders = nn.ModuleList()
|
|
out_channels = initial_output_channels
|
|
for layer in range(depth):
|
|
|
|
encoder = WavenetEncoder(num_channels,out_channels)
|
|
self.encoders.append(encoder)
|
|
|
|
num_channels = out_channels
|
|
out_channels += initial_output_channels
|
|
if layer == depth -1 :
|
|
decoder = WavenetDecoder(depth * initial_output_channels + num_channels,num_channels)
|
|
else:
|
|
decoder = WavenetDecoder(num_channels+out_channels,num_channels)
|
|
|
|
self.decoders.insert(0,decoder)
|
|
|
|
bottleneck_dim = depth * initial_output_channels
|
|
self.bottleneck = nn.Sequential(
|
|
nn.Conv1d(bottleneck_dim,bottleneck_dim, 15, stride=1,
|
|
padding=7),
|
|
nn.BatchNorm1d(bottleneck_dim),
|
|
nn.LeakyReLU(negative_slope=0.1, inplace=True)
|
|
)
|
|
self.final = nn.Sequential(
|
|
nn.Conv1d(1 + initial_output_channels, 1, kernel_size=1, stride=1),
|
|
nn.Tanh()
|
|
)
|
|
|
|
|
|
def forward(
|
|
self,waveform
|
|
):
|
|
if waveform.dim() == 2:
|
|
waveform = waveform.unsqueeze(1)
|
|
|
|
if waveform.size(1)!=1:
|
|
raise TypeError(f"Wave-U-Net can only process mono channel audio, input has {waveform.size(1)} channels")
|
|
|
|
encoder_outputs = []
|
|
out = waveform
|
|
for encoder in self.encoders:
|
|
out = encoder(out)
|
|
encoder_outputs.insert(0,out)
|
|
out = out[:,:,::2]
|
|
|
|
out = self.bottleneck(out)
|
|
|
|
for layer,decoder in enumerate(self.decoders):
|
|
out = F.interpolate(out, scale_factor=2, mode="linear")
|
|
out = self.fix_last_dim(out,encoder_outputs[layer])
|
|
out = torch.cat([out,encoder_outputs[layer]],dim=1)
|
|
out = decoder(out)
|
|
|
|
out = torch.cat([out, waveform],dim=1)
|
|
out = self.final(out)
|
|
return out
|
|
|
|
def fix_last_dim(self,x,target):
|
|
"""
|
|
trying to do centre crop along last dimension
|
|
"""
|
|
|
|
assert x.shape[-1] >= target.shape[-1], "input dimension cannot be larger than target dimension"
|
|
if x.shape[-1] == target.shape[-1]:
|
|
return x
|
|
|
|
diff = x.shape[-1] - target.shape[-1]
|
|
if diff%2!=0:
|
|
x = F.pad(x,(0,1))
|
|
diff += 1
|
|
|
|
crop = diff//2
|
|
return x[:,:,crop:-crop]
|