mayavoz/cli/train.py

63 lines
2.2 KiB
Python

import os
from types import MethodType
import hydra
from hydra.utils import instantiate
from omegaconf import DictConfig
from torch.optim.lr_scheduler import ReduceLROnPlateau
from pytorch_lightning.callbacks import ModelCheckpoint, EarlyStopping
from pytorch_lightning.loggers import MLFlowLogger
os.environ["HYDRA_FULL_ERROR"] = "1"
JOB_ID = os.environ.get("SLURM_JOBID")
@hydra.main(config_path="train_config",config_name="config")
def main(config: DictConfig):
callbacks = []
logger = MLFlowLogger(experiment_name=config.mlflow.experiment_name,
run_name=config.mlflow.run_name, tags={"JOB_ID":JOB_ID})
parameters = config.hyperparameters
dataset = instantiate(config.dataset)
model = instantiate(config.model,dataset=dataset,lr=parameters.get("lr"),
loss=parameters.get("loss"), metric = parameters.get("metric"))
direction = model.valid_monitor
checkpoint = ModelCheckpoint(
dirpath="./model",filename=f"model_{JOB_ID}",monitor="val_loss",verbose=False,
mode=direction,every_n_epochs=1
)
callbacks.append(checkpoint)
early_stopping = EarlyStopping(
monitor="val_loss",
mode=direction,
min_delta=0.0,
patience=parameters.get("EarlyStopping_patience",10),
strict=True,
verbose=False,
)
callbacks.append(early_stopping)
def configure_optimizer(self):
optimizer = instantiate(config.optimizer,lr=parameters.get("lr"),parameters=self.parameters())
scheduler = ReduceLROnPlateau(
optimizer=optimizer,
mode=direction,
factor=parameters.get("ReduceLr_factor",0.1),
verbose=True,
min_lr=parameters.get("min_lr",1e-6),
patience=parameters.get("ReduceLr_patience",3)
)
return {"optimizer":optimizer, "lr_scheduler":scheduler}
model.configure_parameters = MethodType(configure_optimizer,model)
trainer = instantiate(config.trainer,logger=logger,callbacks=callbacks)
trainer.fit(model)
logger.experiment.log_artifact(logger.run_id,f"./model/model_{JOB_ID}")
if __name__=="__main__":
main()