118 lines
3.8 KiB
Python
118 lines
3.8 KiB
Python
import glob
|
|
import os
|
|
import numpy as np
|
|
from scipy.io import wavfile
|
|
|
|
MATCHING_FNS = ("one_to_one", "one_to_many")
|
|
|
|
|
|
class ProcessorFunctions:
|
|
"""
|
|
Preprocessing methods for different types of speech enhacement datasets.
|
|
"""
|
|
|
|
@staticmethod
|
|
def one_to_one(clean_path, noisy_path):
|
|
"""
|
|
One clean audio can have only one noisy audio file
|
|
"""
|
|
|
|
matching_wavfiles = list()
|
|
clean_filenames = [
|
|
file.split("/")[-1]
|
|
for file in glob.glob(os.path.join(clean_path, "*.wav"))
|
|
]
|
|
noisy_filenames = [
|
|
file.split("/")[-1]
|
|
for file in glob.glob(os.path.join(noisy_path, "*.wav"))
|
|
]
|
|
common_filenames = np.intersect1d(noisy_filenames, clean_filenames)
|
|
|
|
for file_name in common_filenames:
|
|
|
|
sr_clean, clean_file = wavfile.read(
|
|
os.path.join(clean_path, file_name)
|
|
)
|
|
sr_noisy, noisy_file = wavfile.read(
|
|
os.path.join(noisy_path, file_name)
|
|
)
|
|
if (clean_file.shape[-1] == noisy_file.shape[-1]) and (
|
|
sr_clean == sr_noisy
|
|
):
|
|
matching_wavfiles.append(
|
|
{
|
|
"clean": os.path.join(clean_path, file_name),
|
|
"noisy": os.path.join(noisy_path, file_name),
|
|
"duration": clean_file.shape[-1] / sr_clean,
|
|
}
|
|
)
|
|
return matching_wavfiles
|
|
|
|
@staticmethod
|
|
def one_to_many(clean_path, noisy_path):
|
|
"""
|
|
One clean audio have multiple noisy audio files
|
|
"""
|
|
|
|
matching_wavfiles = dict()
|
|
clean_filenames = [
|
|
file.split("/")[-1]
|
|
for file in glob.glob(os.path.join(clean_path, "*.wav"))
|
|
]
|
|
for clean_file in clean_filenames:
|
|
noisy_filenames = glob.glob(
|
|
os.path.join(noisy_path, f"*_{clean_file}.wav")
|
|
)
|
|
for noisy_file in noisy_filenames:
|
|
|
|
sr_clean, clean_file = wavfile.read(
|
|
os.path.join(clean_path, clean_file)
|
|
)
|
|
sr_noisy, noisy_file = wavfile.read(noisy_file)
|
|
if (clean_file.shape[-1] == noisy_file.shape[-1]) and (
|
|
sr_clean == sr_noisy
|
|
):
|
|
matching_wavfiles.update(
|
|
{
|
|
"clean": os.path.join(clean_path, clean_file),
|
|
"noisy": noisy_file,
|
|
"duration": clean_file.shape[-1] / sr_clean,
|
|
}
|
|
)
|
|
|
|
return matching_wavfiles
|
|
|
|
|
|
class Fileprocessor:
|
|
def __init__(self, clean_dir, noisy_dir, matching_function=None):
|
|
self.clean_dir = clean_dir
|
|
self.noisy_dir = noisy_dir
|
|
self.matching_function = matching_function
|
|
|
|
@classmethod
|
|
def from_name(cls, name: str, clean_dir, noisy_dir, matching_function=None):
|
|
|
|
if matching_function is None:
|
|
if name.lower() == "vctk":
|
|
return cls(clean_dir, noisy_dir, ProcessorFunctions.one_to_one)
|
|
elif name.lower() == "dns-2020":
|
|
return cls(clean_dir, noisy_dir, ProcessorFunctions.one_to_many)
|
|
else:
|
|
if matching_function not in MATCHING_FNS:
|
|
raise ValueError(
|
|
f"Invalid matching function! Avaialble options are {MATCHING_FNS}"
|
|
)
|
|
else:
|
|
return cls(
|
|
clean_dir,
|
|
noisy_dir,
|
|
getattr(ProcessorFunctions, matching_function),
|
|
)
|
|
|
|
def prepare_matching_dict(self):
|
|
|
|
if self.matching_function is None:
|
|
raise ValueError("Not a valid matching function")
|
|
|
|
return self.matching_function(self.clean_dir, self.noisy_dir)
|