161 lines
5.4 KiB
Python
161 lines
5.4 KiB
Python
import multiprocessing
|
|
import math
|
|
import os
|
|
import pytorch_lightning as pl
|
|
from torch.utils.data import IterableDataset, DataLoader, Dataset
|
|
import torch.nn.functional as F
|
|
from typing import Optional
|
|
|
|
from enhancer.data.fileprocessor import Fileprocessor
|
|
from enhancer.utils.random import create_unique_rng
|
|
from enhancer.utils.io import Audio
|
|
from enhancer.utils import check_files
|
|
from enhancer.utils.config import Files
|
|
|
|
class TrainDataset(IterableDataset):
|
|
|
|
def __init__(self,dataset):
|
|
self.dataset = dataset
|
|
|
|
def __iter__(self):
|
|
return self.dataset.train__iter__()
|
|
|
|
def __len__(self):
|
|
return self.dataset.train__len__()
|
|
|
|
class ValidDataset(Dataset):
|
|
|
|
def __init__(self,dataset):
|
|
self.dataset = dataset
|
|
|
|
def __getitem__(self,idx):
|
|
return self.dataset.val__getitem__(idx)
|
|
|
|
def __len__(self):
|
|
return self.dataset.val__len__()
|
|
|
|
class TaskDataset(pl.LightningDataModule):
|
|
|
|
def __init__(
|
|
self,
|
|
name:str,
|
|
root_dir:str,
|
|
files:Files,
|
|
duration:float=1.0,
|
|
sampling_rate:int=48000,
|
|
matching_function = None,
|
|
batch_size=32,
|
|
num_workers:Optional[int]=None):
|
|
super().__init__()
|
|
|
|
self.name = name
|
|
self.files,self.root_dir = check_files(root_dir,files)
|
|
self.duration = duration
|
|
self.sampling_rate = sampling_rate
|
|
self.batch_size = batch_size
|
|
self.matching_function = matching_function
|
|
self._validation = []
|
|
if num_workers is None:
|
|
num_workers = multiprocessing.cpu_count()//2
|
|
self.num_workers = num_workers
|
|
|
|
def setup(self, stage: Optional[str] = None):
|
|
|
|
if stage in ("fit",None):
|
|
|
|
train_clean = os.path.join(self.root_dir,self.files.train_clean)
|
|
train_noisy = os.path.join(self.root_dir,self.files.train_noisy)
|
|
fp = Fileprocessor.from_name(self.name,train_clean,
|
|
train_noisy, self.matching_function)
|
|
self.train_data = fp.prepare_matching_dict()
|
|
|
|
val_clean = os.path.join(self.root_dir,self.files.test_clean)
|
|
val_noisy = os.path.join(self.root_dir,self.files.test_noisy)
|
|
fp = Fileprocessor.from_name(self.name,val_clean,
|
|
val_noisy, self.matching_function)
|
|
val_data = fp.prepare_matching_dict()
|
|
|
|
for item in val_data:
|
|
clean,noisy,total_dur = item.values()
|
|
if total_dur < self.duration:
|
|
continue
|
|
num_segments = round(total_dur/self.duration)
|
|
for index in range(num_segments):
|
|
start_time = index * self.duration
|
|
self._validation.append(({"clean":clean,"noisy":noisy},
|
|
start_time))
|
|
def train_dataloader(self):
|
|
return DataLoader(TrainDataset(self), batch_size = self.batch_size,num_workers=self.num_workers)
|
|
|
|
def val_dataloader(self):
|
|
return DataLoader(ValidDataset(self), batch_size = self.batch_size,num_workers=self.num_workers)
|
|
|
|
class EnhancerDataset(TaskDataset):
|
|
"""Dataset object for creating clean-noisy speech enhancement datasets"""
|
|
|
|
def __init__(
|
|
self,
|
|
name:str,
|
|
root_dir:str,
|
|
files:Files,
|
|
duration=1.0,
|
|
sampling_rate=48000,
|
|
matching_function=None,
|
|
batch_size=32,
|
|
num_workers:Optional[int]=None):
|
|
|
|
super().__init__(
|
|
name=name,
|
|
root_dir=root_dir,
|
|
files=files,
|
|
sampling_rate=sampling_rate,
|
|
duration=duration,
|
|
matching_function = matching_function,
|
|
batch_size=batch_size,
|
|
num_workers = num_workers,
|
|
|
|
)
|
|
|
|
self.sampling_rate = sampling_rate
|
|
self.files = files
|
|
self.duration = max(1.0,duration)
|
|
self.audio = Audio(self.sampling_rate,mono=True,return_tensor=True)
|
|
|
|
def setup(self, stage:Optional[str]=None):
|
|
|
|
super().setup(stage=stage)
|
|
|
|
def train__iter__(self):
|
|
|
|
rng = create_unique_rng(self.model.current_epoch)
|
|
|
|
while True:
|
|
|
|
file_dict,*_ = rng.choices(self.train_data,k=1,
|
|
weights=[file["duration"] for file in self.train_data])
|
|
file_duration = file_dict['duration']
|
|
start_time = round(rng.uniform(0,file_duration- self.duration),2)
|
|
data = self.prepare_segment(file_dict,start_time)
|
|
yield data
|
|
|
|
def val__getitem__(self,idx):
|
|
return self.prepare_segment(*self._validation[idx])
|
|
|
|
def prepare_segment(self,file_dict:dict, start_time:float):
|
|
|
|
clean_segment = self.audio(file_dict["clean"],
|
|
offset=start_time,duration=self.duration)
|
|
noisy_segment = self.audio(file_dict["noisy"],
|
|
offset=start_time,duration=self.duration)
|
|
clean_segment = F.pad(clean_segment,(0,int(self.duration*self.sampling_rate-clean_segment.shape[-1])))
|
|
noisy_segment = F.pad(noisy_segment,(0,int(self.duration*self.sampling_rate-noisy_segment.shape[-1])))
|
|
return {"clean": clean_segment,"noisy":noisy_segment}
|
|
|
|
def train__len__(self):
|
|
return math.ceil(sum([file["duration"] for file in self.train_data])/self.duration)
|
|
|
|
def val__len__(self):
|
|
return len(self._validation)
|
|
|
|
|