mayavoz/enhancer/models/dccrn.py

245 lines
7.2 KiB
Python

import logging
from typing import Any, List, Optional, Tuple, Union
from torch import nn
from enhancer.data import EnhancerDataset
from enhancer.models import Model
from enhancer.models.complexnn import (
ComplexBatchNorm2D,
ComplexConv2d,
ComplexConvTranspose2d,
ComplexLSTM,
ComplexRelu,
)
from enhancer.utils.transforms import ConviSTFT, ConvSTFT
from enhancer.utils.utils import merge_dict
class DCCRN_ENCODER(nn.Module):
def __init__(
self,
in_channels: int,
out_channel: int,
kernel_size: Tuple[int, int],
complex_norm: bool = True,
complex_relu: bool = True,
stride: Tuple[int, int] = (2, 1),
padding: Tuple[int, int] = (2, 1),
):
super().__init__()
batchnorm = ComplexBatchNorm2D if complex_norm else nn.BatchNorm2d
activation = ComplexRelu() if complex_relu else nn.PReLU()
self.encoder = nn.Sequential(
ComplexConv2d(
in_channels,
out_channel,
kernel_size=kernel_size,
stride=stride,
padding=padding,
),
batchnorm(out_channel),
activation,
)
def forward(self, waveform):
return self.encoder(waveform)
class DCCRN_DECODER(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: int,
kernel_size: Tuple[int, int],
complex_norm: bool = True,
complex_relu: bool = True,
stride: Tuple[int, int] = (2, 1),
padding: Tuple[int, int] = (2, 0),
output_padding: Tuple[int, int] = (1, 0),
):
super().__init__()
batchnorm = ComplexBatchNorm2D if complex_norm else nn.BatchNorm2d
activation = ComplexRelu() if complex_relu else nn.PReLU()
self.decoder = nn.Sequential(
ComplexConvTranspose2d(
in_channels,
out_channels,
kernel_size=kernel_size,
stride=stride,
padding=padding,
output_padding=output_padding,
),
batchnorm(out_channels),
activation,
)
def forward(self, waveform):
return self.decoder(waveform)
class DCCRN(Model):
STFT_DEFAULTS = {
"window_len": 400,
"hop_size": 100,
"nfft": 512,
"window": "hamming",
}
ED_DEFAULTS = {
"initial_output_channels": 32,
"depth": 6,
"kernel_size": 5,
"growth_factor": 2,
"stride": 2,
"padding": 2,
"output_padding": 1,
}
LSTM_DEFAULTS = {
"num_layers": 2,
"hidden_size": 256,
}
def __init__(
self,
stft: Optional[dict] = None,
encoder_decoder: Optional[dict] = None,
lstm: Optional[dict] = None,
complex_lstm: bool = True,
complex_norm: bool = True,
complex_relu: bool = True,
masking_mode: str = "E",
num_channels: int = 1,
sampling_rate=16000,
lr: float = 1e-3,
dataset: Optional[EnhancerDataset] = None,
duration: Optional[float] = None,
loss: Union[str, List, Any] = "mse",
metric: Union[str, List] = "mse",
):
duration = (
dataset.duration if isinstance(dataset, EnhancerDataset) else None
)
if dataset is not None:
if sampling_rate != dataset.sampling_rate:
logging.warning(
f"model sampling rate {sampling_rate} should match dataset sampling rate {dataset.sampling_rate}"
)
sampling_rate = dataset.sampling_rate
super().__init__(
num_channels=num_channels,
sampling_rate=sampling_rate,
lr=lr,
dataset=dataset,
duration=duration,
loss=loss,
metric=metric,
)
encoder_decoder = merge_dict(self.ED_DEFAULTS, encoder_decoder)
lstm = merge_dict(self.LSTM_DEFAULTS, lstm)
stft = merge_dict(self.STFT_DEFAULTS, stft)
self.save_hyperparameters(
"encoder_decoder",
"lstm",
"stft",
"complex_lstm",
"complex_norm",
"masking_mode",
)
self.complex_lstm = complex_lstm
self.complex_norm = complex_norm
self.masking_mode = masking_mode
self.stft = ConvSTFT(
stft["window_len"], stft["hop_size"], stft["nfft"], stft["window"]
)
self.istft = ConviSTFT(
stft["window_len"], stft["hop_size"], stft["nfft"], stft["window"]
)
self.encoder = nn.ModuleList()
self.decoder = nn.ModuleList()
num_channels *= 2
hidden_size = encoder_decoder["initial_output_channels"]
growth_factor = 2
for layer in range(encoder_decoder["depth"]):
encoder_ = DCCRN_ENCODER(
num_channels,
hidden_size,
kernel_size=(encoder_decoder["kernel_size"], 2),
stride=(encoder_decoder["stride"], 1),
padding=(encoder_decoder["padding"], 1),
complex_norm=complex_norm,
complex_relu=complex_relu,
)
self.encoder.append(encoder_)
decoder_ = DCCRN_DECODER(
hidden_size + hidden_size,
num_channels,
kernel_size=(encoder_decoder["kernel_size"], 2),
stride=(encoder_decoder["stride"], 1),
padding=(encoder_decoder["padding"], 0),
output_padding=(encoder_decoder["output_padding"], 0),
complex_norm=complex_norm,
complex_relu=complex_relu,
)
self.decoder.insert(0, decoder_)
if layer < encoder_decoder["depth"] - 3:
num_channels = hidden_size
hidden_size *= growth_factor
else:
num_channels = hidden_size
kernel_size = hidden_size / 2
hidden_size = stft["nfft"] / 2 ** (encoder_decoder["depth"])
if self.complex_lstm:
lstms = []
for layer in range(lstm["num_layers"]):
if layer == 0:
input_size = int(hidden_size * kernel_size)
else:
input_size = lstm["hidden_size"]
if layer == lstm["num_layers"] - 1:
projection_size = int(hidden_size * kernel_size)
else:
projection_size = None
kwargs = {
"input_size": input_size,
"hidden_size": lstm["hidden_size"],
"num_layers": 1,
}
lstms.append(
ComplexLSTM(projection_size=projection_size, **kwargs)
)
self.lstm = nn.Sequential(*lstms)
else:
self.lstm = nn.LSTM(
input_size=hidden_size * kernel_size,
hidden_sizs=lstm["hidden_size"],
num_layers=lstm["num_layers"],
dropout=0.0,
batch_first=False,
)
def forward(self, waveform):
return waveform