mayavoz/enhancer/data/dataset.py

370 lines
11 KiB
Python

import math
import multiprocessing
import os
import random
from itertools import chain, cycle
from typing import Optional
import pytorch_lightning as pl
import torch
import torch.nn.functional as F
from torch.utils.data import DataLoader, Dataset, IterableDataset
from enhancer.data.fileprocessor import Fileprocessor
from enhancer.utils import check_files
from enhancer.utils.config import Files
from enhancer.utils.io import Audio
from enhancer.utils.random import create_unique_rng
class TrainDataset(IterableDataset):
def __init__(self, dataset):
self.dataset = dataset
def __iter__(self):
return self.dataset.train__iter__()
def __len__(self):
return self.dataset.train__len__()
class ValidDataset(Dataset):
def __init__(self, dataset):
self.dataset = dataset
def __getitem__(self, idx):
return self.dataset.val__getitem__(idx)
def __len__(self):
return self.dataset.val__len__()
class TestDataset(Dataset):
def __init__(self, dataset):
self.dataset = dataset
def __getitem__(self, idx):
return self.dataset.test__getitem__(idx)
def __len__(self):
return self.dataset.test__len__()
class TaskDataset(pl.LightningDataModule):
def __init__(
self,
name: str,
root_dir: str,
files: Files,
valid_minutes: float = 0.20,
duration: float = 1.0,
stride=None,
sampling_rate: int = 48000,
matching_function=None,
batch_size=32,
num_workers: Optional[int] = None,
):
super().__init__()
self.name = name
self.files, self.root_dir = check_files(root_dir, files)
self.duration = duration
self.stride = stride or duration
self.sampling_rate = sampling_rate
self.batch_size = batch_size
self.matching_function = matching_function
self._validation = []
if num_workers is None:
num_workers = multiprocessing.cpu_count() // 2
self.num_workers = num_workers
print("num_workers-main", self.num_workers)
if valid_minutes > 0.0:
self.valid_minutes = valid_minutes
else:
raise ValueError("valid_minutes must be greater than 0")
def setup(self, stage: Optional[str] = None):
"""
prepare train/validation/test data splits
"""
if stage in ("fit", None):
train_clean = os.path.join(self.root_dir, self.files.train_clean)
train_noisy = os.path.join(self.root_dir, self.files.train_noisy)
fp = Fileprocessor.from_name(
self.name, train_clean, train_noisy, self.matching_function
)
train_data = fp.prepare_matching_dict()
train_data, self.val_data = self.train_valid_split(
train_data, valid_minutes=self.valid_minutes, random_state=42
)
self.train_data = self.prepare_traindata(train_data)
self._validation = self.prepare_mapstype(self.val_data)
print(
"train_data_size", sum([len(item) for item in self.train_data])
)
test_clean = os.path.join(self.root_dir, self.files.test_clean)
test_noisy = os.path.join(self.root_dir, self.files.test_noisy)
fp = Fileprocessor.from_name(
self.name, test_clean, test_noisy, self.matching_function
)
test_data = fp.prepare_matching_dict()
self._test = self.prepare_mapstype(test_data)
def train_valid_split(
self, data, valid_minutes: float = 20, random_state: int = 42
):
valid_minutes *= 60
valid_min_now = 0.0
valid_indices = []
random_indices = list(range(0, len(data)))
rng = create_unique_rng(random_state)
rng.shuffle(random_indices)
i = 0
while valid_min_now <= valid_minutes:
valid_indices.append(random_indices[i])
valid_min_now += data[random_indices[i]]["duration"]
i += 1
train_data = [
item for i, item in enumerate(data) if i not in valid_indices
]
valid_data = [item for i, item in enumerate(data) if i in valid_indices]
return train_data, valid_data
def prepare_traindata(self, data):
train_data = []
for item in data:
samples_metadata = []
clean, noisy, total_dur = item.values()
num_segments = self.get_num_segments(
total_dur, self.duration, self.stride
)
for index in range(num_segments):
start = index * self.stride
samples_metadata.append(
({"clean": clean, "noisy": noisy}, start)
)
train_data.append(samples_metadata)
return train_data[:25]
@staticmethod
def get_num_segments(file_duration, duration, stride):
if file_duration < duration:
num_segments = 1
else:
num_segments = math.ceil((file_duration - duration) / stride) + 1
return num_segments
def prepare_mapstype(self, data):
metadata = []
for item in data:
clean, noisy, total_dur = item.values()
if total_dur < self.duration:
metadata.append(({"clean": clean, "noisy": noisy}, 0.0))
else:
num_segments = round(total_dur / self.duration)
for index in range(num_segments):
start_time = index * self.duration
metadata.append(
({"clean": clean, "noisy": noisy}, start_time)
)
return metadata
def train_collatefn(self, batch):
names = []
output = {"noisy": [], "clean": []}
for item in batch:
output["noisy"].append(item["noisy"])
output["clean"].append(item["clean"])
names.append(item["name"])
print(names)
output["clean"] = torch.stack(output["clean"], dim=0)
output["noisy"] = torch.stack(output["noisy"], dim=0)
return output
def worker_init_fn(self, _):
worker_info = torch.utils.data.get_worker_info()
dataset = worker_info.dataset
worker_id = worker_info.id
split_size = len(dataset.dataset.train_data) // worker_info.num_workers
dataset.data = dataset.dataset.train_data[
worker_id * split_size : (worker_id + 1) * split_size
]
def train_dataloader(self):
return DataLoader(
TrainDataset(self),
batch_size=None,
num_workers=self.num_workers,
collate_fn=self.train_collatefn,
worker_init_fn=self.worker_init_fn,
)
def val_dataloader(self):
return DataLoader(
ValidDataset(self),
batch_size=self.batch_size,
num_workers=self.num_workers,
)
def test_dataloader(self):
return DataLoader(
TestDataset(self),
batch_size=self.batch_size,
num_workers=self.num_workers,
)
class EnhancerDataset(TaskDataset):
"""
Dataset object for creating clean-noisy speech enhancement datasets
paramters:
name : str
name of the dataset
root_dir : str
root directory of the dataset containing clean/noisy folders
files : Files
dataclass containing train_clean, train_noisy, test_clean, test_noisy
folder names (refer enhancer.utils.Files dataclass)
duration : float
expected audio duration of single audio sample for training
sampling_rate : int
desired sampling rate
batch_size : int
batch size of each batch
num_workers : int
num workers to be used while training
matching_function : str
maching functions - (one_to_one,one_to_many). Default set to None.
use one_to_one mapping for datasets with one noisy file for each clean file
use one_to_many mapping for multiple noisy files for each clean file
"""
def __init__(
self,
name: str,
root_dir: str,
files: Files,
valid_minutes=5.0,
duration=1.0,
stride=0.5,
sampling_rate=48000,
matching_function=None,
batch_size=32,
num_workers: Optional[int] = None,
):
super().__init__(
name=name,
root_dir=root_dir,
files=files,
valid_minutes=valid_minutes,
sampling_rate=sampling_rate,
duration=duration,
matching_function=matching_function,
batch_size=batch_size,
num_workers=num_workers,
)
self.sampling_rate = sampling_rate
self.files = files
self.duration = max(1.0, duration)
self.audio = Audio(self.sampling_rate, mono=True, return_tensor=True)
self.stride = stride or duration
def setup(self, stage: Optional[str] = None):
super().setup(stage=stage)
def random_sample(self, train_data):
return random.sample(train_data, len(train_data))
def train__iter__(self):
rng = create_unique_rng(self.model.current_epoch)
train_data = rng.sample(self.train_data, len(self.train_data))
return zip(
*[
self.get_stream(self.random_sample(train_data))
for i in range(self.batch_size)
]
)
def get_stream(self, data):
return chain.from_iterable(map(self.process_data, cycle(data)))
def process_data(self, data):
for item in data:
yield self.prepare_segment(*item)
@staticmethod
def get_num_segments(file_duration, duration, stride):
if file_duration < duration:
num_segments = 1
else:
num_segments = math.ceil((file_duration - duration) / stride) + 1
return num_segments
def val__getitem__(self, idx):
return self.prepare_segment(*self._validation[idx])
def test__getitem__(self, idx):
return self.prepare_segment(*self._test[idx])
def prepare_segment(self, file_dict: dict, start_time: float):
clean_segment = self.audio(
file_dict["clean"], offset=start_time, duration=self.duration
)
noisy_segment = self.audio(
file_dict["noisy"], offset=start_time, duration=self.duration
)
clean_segment = F.pad(
clean_segment,
(
0,
int(
self.duration * self.sampling_rate - clean_segment.shape[-1]
),
),
)
noisy_segment = F.pad(
noisy_segment,
(
0,
int(
self.duration * self.sampling_rate - noisy_segment.shape[-1]
),
),
)
return {
"clean": clean_segment,
"noisy": noisy_segment,
"name": file_dict["clean"].split("/")[-1] + "->" + str(start_time),
}
def train__len__(self):
worker_info = torch.utils.data.get_worker_info()
if worker_info is None:
train_data = self.train_data
else:
train_data = worker_info.dataset.data
return sum([len(item) for item in train_data]) // (self.batch_size)
def val__len__(self):
return len(self._validation)
def test__len__(self):
return len(self._test)