mayavoz/enhancer/inference.py

119 lines
3.7 KiB
Python

from json import load
import wave
import numpy as np
from scipy.signal import get_window
from scipy.io import wavfile
from typing import List, Optional, Union
import torch
import torch.nn.functional as F
from pathlib import Path
from librosa import load as load_audio
from enhancer.utils import Audio
class Inference:
@staticmethod
def read_input(audio, sr, model_sr):
if isinstance(audio,(np.ndarray,torch.Tensor)):
assert sr is not None, "Invalid sampling rate!"
if len(audio.shape) == 1:
audio = audio.reshape(1,-1)
if isinstance(audio,str):
audio = Path(audio)
if not audio.is_file():
raise ValueError(f"Input file {audio} does not exist")
else:
audio,sr = load_audio(audio,sr=sr,)
if len(audio.shape) == 1:
audio = audio.reshape(1,-1)
else:
assert audio.shape[0] == 1, "Enhance inference only supports single waveform"
waveform = Audio.resample_audio(audio,sr=sr,target_sr=model_sr)
waveform = Audio.convert_mono(waveform)
if isinstance(waveform,np.ndarray):
waveform = torch.from_numpy(waveform)
return waveform
@staticmethod
def batchify(waveform: torch.Tensor, window_size:int, step_size:Optional[int]=None):
"""
break input waveform into samples with duration specified.
"""
assert waveform.ndim == 2, f"Expcted input waveform with 2 dimensions (channels,samples), got {waveform.ndim}"
_,num_samples = waveform.shape
waveform = waveform.unsqueeze(-1)
step_size = window_size//2 if step_size is None else step_size
if num_samples >= window_size:
waveform_batch = F.unfold(waveform[None,...], kernel_size=(window_size,1),
stride=(step_size,1), padding=(window_size,0))
waveform_batch = waveform_batch.permute(2,0,1)
return waveform_batch
@staticmethod
def aggreagate(data:torch.Tensor,window_size:int,total_frames:int,step_size:Optional[int]=None,
window="hanning",):
"""
takes input as tensor outputs aggregated waveform
"""
num_chunks,n_channels,num_frames = data.shape
window = get_window(window=window,Nx=data.shape[-1])
window = torch.from_numpy(window).to(data.device)
data *= window
step_size = window_size//2 if step_size is None else step_size
data = data.permute(1,2,0)
data = F.fold(data,
(total_frames,1),
kernel_size=(window_size,1),
stride=(step_size,1),
padding=(window_size,0)).squeeze(-1)
return data.reshape(1,n_channels,-1)
@staticmethod
def write_output(waveform:torch.Tensor,filename:Union[str,Path],sr:int):
if isinstance(filename,str):
filename = Path(filename)
parent, name = filename.parent, "cleaned_"+filename.name
filename = parent/Path(name)
if filename.is_file():
raise FileExistsError(f"file {filename} already exists")
else:
if isinstance(waveform,torch.Tensor):
waveform = waveform.detach().cpu().squeeze().numpy()
wavfile.write(filename,rate=sr,data=waveform)
@staticmethod
def prepare_output(waveform:torch.Tensor, model_sampling_rate:int,
audio:Union[str,np.ndarray,torch.Tensor], sampling_rate:Optional[int]
):
if isinstance(audio,np.ndarray):
waveform = waveform.detach().cpu().numpy()
if sampling_rate!=None:
waveform = Audio.resample_audio(waveform, sr=model_sampling_rate, target_sr=sampling_rate)
return waveform