mayavoz/enhancer/data/dataset.py

95 lines
3.5 KiB
Python

import glob
import math
import os
import pytorch_lightning as pl
from torch.utils.data import IterableDataset, DataLoader
import torch.nn.functional as F
from typing import Optional
from enhancer.utils.random import create_unique_rng
from enhancer.utils.io import Audio
from enhancer.utils import Fileprocessor
from enhancer.utils.config import Files
class EnhancerDataset(IterableDataset):
"""Dataset object for creating clean-noisy speech enhancement datasets"""
def __init__(self,name:str,clean_dir,noisy_dir,duration=1.0,sampling_rate=48000, matching_function=None):
if not os.path.isdir(clean_dir):
raise ValueError(f"{clean_dir} is not a valid directory")
if not os.path.isdir(noisy_dir):
raise ValueError(f"{clean_dir} is not a valid directory")
self.sampling_rate = sampling_rate
self.clean_dir = clean_dir
self.noisy_dir = noisy_dir
self.duration = max(1.0,duration)
self.audio = Audio(self.sampling_rate,mono=True,return_tensor=True)
fp = Fileprocessor.from_name(name,clean_dir,noisy_dir,matching_function)
self.valid_files = fp.prepare_matching_dict()
def __iter__(self):
rng = create_unique_rng(12) ##pass epoch number here
while True:
file_dict,*_ = rng.choices(self.valid_files,k=1,
weights=[self.valid_files[file]['duration'] for file in self.valid_files])
file_duration = file_dict['duration']
start_time = round(rng.uniform(0,file_duration- self.duration),2)
data = self.prepare_segment(file_dict,start_time)
yield data
def prepare_segment(self,file_dict:dict, start_time:float):
clean_segment = self.audio(file_dict.keys()[0],
offset=start_time,duration=self.duration)
noisy_segment = self.audio(file_dict['noisy'],
offset=start_time,duration=self.duration)
clean_segment = F.pad(clean_segment,(0,int(self.duration*self.sampling_rate-clean_segment.shape[-1])))
noisy_segment = F.pad(noisy_segment,(0,int(self.duration*self.sampling_rate-noisy_segment.shape[-1])))
return {"clean": clean_segment,"noisy":noisy_segment}
def __len__(self):
return math.ceil(sum([file["duration"] for file in self.valid_files])/self.duration)
class Dataset(pl.LightningDataModule):
def __init__(self,name:str, files:Files,
duration:float=1.0, sampling_rate:int=48000, batch_size=32):
super().__init__()
self.train_clean = files.train_clean
self.train_noisy = files.train_noisy
self.valid_clean = files.test_clean
self.valid_noisy = files.test_noisy
self.name = name
self.duration = duration
self.sampling_rate = sampling_rate
self.batch_size = batch_size
def setup(self, stage: Optional[str] = None):
if stage in (None,"fit"):
self.train_dataset = EnhancerDataset(self.name, self.train_clean,
self.train_noisy, self.duration, self.sampling_rate)
self.valid_dataset = EnhancerDataset(self.name, self.valid_clean,
self.valid_noisy, self.duration, self.sampling_rate)
def train_loader(self):
return DataLoader(self.train_dataset, batch_size = self.batch_size)
def valid_loader(self):
return DataLoader(self.valid_dataset, batch_size = self.batch_size)