mayavoz/enhancer/inference.py

171 lines
5.3 KiB
Python

from pathlib import Path
from typing import Optional, Union
import numpy as np
import torch
import torch.nn.functional as F
from librosa import load as load_audio
from scipy.io import wavfile
from scipy.signal import get_window
from enhancer.utils import Audio
class Inference:
"""
contains methods used for inference.
"""
@staticmethod
def read_input(audio, sr, model_sr):
"""
read and verify audio input regardless of the input format.
arguments:
audio : audio input
sr : sampling rate of input audio
model_sr : sampling rate used for model training.
"""
if isinstance(audio, (np.ndarray, torch.Tensor)):
assert sr is not None, "Invalid sampling rate!"
if len(audio.shape) == 1:
audio = audio.reshape(1, -1)
if isinstance(audio, str):
audio = Path(audio)
if not audio.is_file():
raise ValueError(f"Input file {audio} does not exist")
else:
audio, sr = load_audio(
audio,
sr=sr,
)
if len(audio.shape) == 1:
audio = audio.reshape(1, -1)
else:
assert (
audio.shape[0] == 1
), "Enhance inference only supports single waveform"
waveform = Audio.resample_audio(audio, sr=sr, target_sr=model_sr)
waveform = Audio.convert_mono(waveform)
if isinstance(waveform, np.ndarray):
waveform = torch.from_numpy(waveform)
return waveform
@staticmethod
def batchify(
waveform: torch.Tensor,
window_size: int,
step_size: Optional[int] = None,
):
"""
break input waveform into samples with duration specified.(Overlap-add)
arguments:
waveform : audio waveform
window_size : window size used for splitting waveform into batches
step_size : step_size used for splitting waveform into batches
"""
assert (
waveform.ndim == 2
), f"Expcted input waveform with 2 dimensions (channels,samples), got {waveform.ndim}"
_, num_samples = waveform.shape
waveform = waveform.unsqueeze(-1)
step_size = window_size // 2 if step_size is None else step_size
if num_samples >= window_size:
waveform_batch = F.unfold(
waveform[None, ...],
kernel_size=(window_size, 1),
stride=(step_size, 1),
padding=(window_size, 0),
)
waveform_batch = waveform_batch.permute(2, 0, 1)
return waveform_batch
@staticmethod
def aggreagate(
data: torch.Tensor,
window_size: int,
total_frames: int,
step_size: Optional[int] = None,
window="hamming",
):
"""
stitch batched waveform into single waveform. (Overlap-add)
arguments:
data: batched waveform
window_size : window_size used to batch waveform
step_size : step_size used to batch waveform
total_frames : total number of frames present in original waveform
window : type of window used for overlap-add mechanism.
"""
num_chunks, n_channels, num_frames = data.shape
window = get_window(window=window, Nx=data.shape[-1])
window = torch.from_numpy(window).to(data.device)
data *= window
step_size = window_size // 2 if step_size is None else step_size
data = data.permute(1, 2, 0)
data = F.fold(
data,
(total_frames, 1),
kernel_size=(window_size, 1),
stride=(step_size, 1),
padding=(window_size, 0),
).squeeze(-1)
return data.reshape(1, n_channels, -1)
@staticmethod
def write_output(
waveform: torch.Tensor, filename: Union[str, Path], sr: int
):
"""
write audio output as wav file
arguments:
waveform : audio waveform
filename : name of the wave file. Output will be written as cleaned_filename.wav
sr : sampling rate
"""
if isinstance(filename, str):
filename = Path(filename)
parent, name = filename.parent, "cleaned_" + filename.name
filename = parent / Path(name)
if filename.is_file():
raise FileExistsError(f"file {filename} already exists")
else:
wavfile.write(
filename, rate=sr, data=waveform.detach().cpu().numpy()
)
@staticmethod
def prepare_output(
waveform: torch.Tensor,
model_sampling_rate: int,
audio: Union[str, np.ndarray, torch.Tensor],
sampling_rate: Optional[int],
):
"""
prepare output audio based on input format
arguments:
waveform : predicted audio waveform
model_sampling_rate : sampling rate used to train the model
audio : input audio
sampling_rate : input audio sampling rate
"""
if isinstance(audio, np.ndarray):
waveform = waveform.detach().cpu().numpy()
if sampling_rate is not None:
waveform = Audio.resample_audio(
waveform, sr=model_sampling_rate, target_sr=sampling_rate
)
return waveform