29 lines
655 B
Python
29 lines
655 B
Python
import torch
|
|
import torch.nn as nn
|
|
|
|
|
|
class mean_squared_error(nn.Module):
|
|
|
|
def __init__(self,reduction="mean"):
|
|
super().__init__()
|
|
|
|
self.loss_fun = nn.MSELoss(reduction=reduction)
|
|
|
|
def forward(self,prediction:torch.Tensor, target: torch.Tensor):
|
|
|
|
return self.loss_fun(prediction, target)
|
|
|
|
class mean_absolute_error(nn.Module):
|
|
|
|
def __init__(self,reduction="mean"):
|
|
|
|
self.loss_fun = nn.L1Loss(reduction=reduction)
|
|
|
|
def forward(self, prediction:torch.Tensor, target: torch.Tensor):
|
|
|
|
return self.loss_fun(prediction, target)
|
|
|
|
LOSS_MAP = {"mea":mean_absolute_error, "mse": mean_squared_error}
|
|
|
|
|