mayavoz/enhancer/models/model.py

51 lines
1.2 KiB
Python

from typing import Optional
from torch.optim import Adam
import pytorch_lightning as pl
from enhancer.data.dataset import Dataset
class Model(pl.LightningModule):
def __init__(
self,
num_channels:int=1,
sampling_rate:int=16000,
lr:float=1e-3,
dataset:Optional[Dataset]=None,
):
super().__init__()
assert num_channels ==1 , "Enhancer only support for mono channel models"
self.save_hyperparameters("num_channels","sampling_rate","lr")
self.dataset = dataset
@property
def dataset(self):
return self._dataset
@dataset.setter
def dataset(self,dataset):
self._dataset = dataset
def setup(self,stage:Optional[str]=None):
if stage == "fit":
self.dataset.setup(stage)
self.dataset.model = self
def train_dataloader(self):
return self.dataset.train_dataloader()
def val_dataloader(self):
return self.dataset.val_dataloader()
def configure_optimizers(self):
return Adam(self.parameters, lr = self.hparams.lr)
def training_step(self,batch, batch_idx:int):
pass
@classmethod
def from_pretrained(cls,):
pass