264 lines
8.0 KiB
Python
264 lines
8.0 KiB
Python
import logging
|
|
from typing import Optional, Union, List
|
|
from torch import nn
|
|
import torch.nn.functional as F
|
|
import math
|
|
|
|
from enhancer.models.model import Model
|
|
from enhancer.data.dataset import EnhancerDataset
|
|
from enhancer.utils.io import Audio as audio
|
|
from enhancer.utils.utils import merge_dict
|
|
|
|
|
|
class DemucsLSTM(nn.Module):
|
|
def __init__(
|
|
self,
|
|
input_size: int,
|
|
hidden_size: int,
|
|
num_layers: int,
|
|
bidirectional: bool = True,
|
|
):
|
|
super().__init__()
|
|
self.lstm = nn.LSTM(
|
|
input_size, hidden_size, num_layers, bidirectional=bidirectional
|
|
)
|
|
dim = 2 if bidirectional else 1
|
|
self.linear = nn.Linear(dim * hidden_size, hidden_size)
|
|
|
|
def forward(self, x):
|
|
|
|
output, (h, c) = self.lstm(x)
|
|
output = self.linear(output)
|
|
|
|
return output, (h, c)
|
|
|
|
|
|
class DemucsEncoder(nn.Module):
|
|
def __init__(
|
|
self,
|
|
num_channels: int,
|
|
hidden_size: int,
|
|
kernel_size: int,
|
|
stride: int = 1,
|
|
glu: bool = False,
|
|
):
|
|
super().__init__()
|
|
activation = nn.GLU(1) if glu else nn.ReLU()
|
|
multi_factor = 2 if glu else 1
|
|
self.encoder = nn.Sequential(
|
|
nn.Conv1d(num_channels, hidden_size, kernel_size, stride),
|
|
nn.ReLU(),
|
|
nn.Conv1d(hidden_size, hidden_size * multi_factor, kernel_size, 1),
|
|
activation,
|
|
)
|
|
|
|
def forward(self, waveform):
|
|
|
|
return self.encoder(waveform)
|
|
|
|
|
|
class DemucsDecoder(nn.Module):
|
|
def __init__(
|
|
self,
|
|
num_channels: int,
|
|
hidden_size: int,
|
|
kernel_size: int,
|
|
stride: int = 1,
|
|
glu: bool = False,
|
|
layer: int = 0,
|
|
):
|
|
super().__init__()
|
|
activation = nn.GLU(1) if glu else nn.ReLU()
|
|
multi_factor = 2 if glu else 1
|
|
self.decoder = nn.Sequential(
|
|
nn.Conv1d(hidden_size, hidden_size * multi_factor, kernel_size, 1),
|
|
activation,
|
|
nn.ConvTranspose1d(hidden_size, num_channels, kernel_size, stride),
|
|
)
|
|
if layer > 0:
|
|
self.decoder.add_module("4", nn.ReLU())
|
|
|
|
def forward(
|
|
self,
|
|
waveform,
|
|
):
|
|
|
|
out = self.decoder(waveform)
|
|
return out
|
|
|
|
|
|
class Demucs(Model):
|
|
"""
|
|
Demucs model from https://arxiv.org/pdf/1911.13254.pdf
|
|
parameters:
|
|
encoder_decoder: dict, optional
|
|
keyword arguments passsed to encoder decoder block
|
|
lstm : dict, optional
|
|
keyword arguments passsed to LSTM block
|
|
num_channels: int, defaults to 1
|
|
number channels in input audio
|
|
sampling_rate: int, defaults to 16KHz
|
|
sampling rate of input audio
|
|
lr : float, defaults to 1e-3
|
|
learning rate used for training
|
|
dataset: EnhancerDataset, optional
|
|
EnhancerDataset object containing train/validation data for training
|
|
duration : float, optional
|
|
chunk duration in seconds
|
|
loss : string or List of strings
|
|
loss function to be used, available ("mse","mae","SI-SDR")
|
|
metric : string or List of strings
|
|
metric function to be used, available ("mse","mae","SI-SDR")
|
|
|
|
"""
|
|
|
|
ED_DEFAULTS = {
|
|
"initial_output_channels": 48,
|
|
"kernel_size": 8,
|
|
"stride": 1,
|
|
"depth": 5,
|
|
"glu": True,
|
|
"growth_factor": 2,
|
|
}
|
|
LSTM_DEFAULTS = {
|
|
"bidirectional": True,
|
|
"num_layers": 2,
|
|
}
|
|
|
|
def __init__(
|
|
self,
|
|
encoder_decoder: Optional[dict] = None,
|
|
lstm: Optional[dict] = None,
|
|
num_channels: int = 1,
|
|
resample: int = 4,
|
|
sampling_rate=16000,
|
|
lr: float = 1e-3,
|
|
dataset: Optional[EnhancerDataset] = None,
|
|
loss: Union[str, List] = "mse",
|
|
metric: Union[str, List] = "mse",
|
|
):
|
|
duration = (
|
|
dataset.duration if isinstance(dataset, EnhancerDataset) else None
|
|
)
|
|
if dataset is not None:
|
|
if sampling_rate != dataset.sampling_rate:
|
|
logging.warn(
|
|
f"model sampling rate {sampling_rate} should match dataset sampling rate {dataset.sampling_rate}"
|
|
)
|
|
sampling_rate = dataset.sampling_rate
|
|
super().__init__(
|
|
num_channels=num_channels,
|
|
sampling_rate=sampling_rate,
|
|
lr=lr,
|
|
dataset=dataset,
|
|
duration=duration,
|
|
loss=loss,
|
|
metric=metric,
|
|
)
|
|
|
|
encoder_decoder = merge_dict(self.ED_DEFAULTS, encoder_decoder)
|
|
lstm = merge_dict(self.LSTM_DEFAULTS, lstm)
|
|
self.save_hyperparameters("encoder_decoder", "lstm", "resample")
|
|
hidden = encoder_decoder["initial_output_channels"]
|
|
self.encoder = nn.ModuleList()
|
|
self.decoder = nn.ModuleList()
|
|
|
|
for layer in range(encoder_decoder["depth"]):
|
|
|
|
encoder_layer = DemucsEncoder(
|
|
num_channels=num_channels,
|
|
hidden_size=hidden,
|
|
kernel_size=encoder_decoder["kernel_size"],
|
|
stride=encoder_decoder["stride"],
|
|
glu=encoder_decoder["glu"],
|
|
)
|
|
self.encoder.append(encoder_layer)
|
|
|
|
decoder_layer = DemucsDecoder(
|
|
num_channels=num_channels,
|
|
hidden_size=hidden,
|
|
kernel_size=encoder_decoder["kernel_size"],
|
|
stride=1,
|
|
glu=encoder_decoder["glu"],
|
|
layer=layer,
|
|
)
|
|
self.decoder.insert(0, decoder_layer)
|
|
|
|
num_channels = hidden
|
|
hidden = self.ED_DEFAULTS["growth_factor"] * hidden
|
|
|
|
self.de_lstm = DemucsLSTM(
|
|
input_size=num_channels,
|
|
hidden_size=num_channels,
|
|
num_layers=lstm["num_layers"],
|
|
bidirectional=lstm["bidirectional"],
|
|
)
|
|
|
|
def forward(self, waveform):
|
|
|
|
if waveform.dim() == 2:
|
|
waveform = waveform.unsqueeze(1)
|
|
|
|
if waveform.size(1) != 1:
|
|
raise TypeError(
|
|
f"Demucs can only process mono channel audio, input has {waveform.size(1)} channels"
|
|
)
|
|
|
|
length = waveform.shape[-1]
|
|
x = F.pad(waveform, (0, self.get_padding_length(length) - length))
|
|
if self.hparams.resample > 1:
|
|
x = audio.resample_audio(
|
|
audio=x,
|
|
sr=self.hparams.sampling_rate,
|
|
target_sr=int(
|
|
self.hparams.sampling_rate * self.hparams.resample
|
|
),
|
|
)
|
|
|
|
encoder_outputs = []
|
|
for encoder in self.encoder:
|
|
x = encoder(x)
|
|
encoder_outputs.append(x)
|
|
x = x.permute(0, 2, 1)
|
|
x, _ = self.de_lstm(x)
|
|
|
|
x = x.permute(0, 2, 1)
|
|
for decoder in self.decoder:
|
|
skip_connection = encoder_outputs.pop(-1)
|
|
x += skip_connection[..., : x.shape[-1]]
|
|
x = decoder(x)
|
|
|
|
if self.hparams.resample > 1:
|
|
x = audio.resample_audio(
|
|
x,
|
|
int(self.hparams.sampling_rate * self.hparams.resample),
|
|
self.hparams.sampling_rate,
|
|
)
|
|
|
|
return x
|
|
|
|
def get_padding_length(self, input_length):
|
|
|
|
input_length = math.ceil(input_length * self.hparams.resample)
|
|
|
|
for layer in range(
|
|
self.hparams.encoder_decoder["depth"]
|
|
): # encoder operation
|
|
input_length = (
|
|
math.ceil(
|
|
(input_length - self.hparams.encoder_decoder["kernel_size"])
|
|
/ self.hparams.encoder_decoder["stride"]
|
|
)
|
|
+ 1
|
|
)
|
|
input_length = max(1, input_length)
|
|
for layer in range(
|
|
self.hparams.encoder_decoder["depth"]
|
|
): # decoder operaration
|
|
input_length = (input_length - 1) * self.hparams.encoder_decoder[
|
|
"stride"
|
|
] + self.hparams.encoder_decoder["kernel_size"]
|
|
input_length = math.ceil(input_length / self.hparams.resample)
|
|
|
|
return int(input_length)
|