mayavoz/enhancer/data/vctk.py

81 lines
3.1 KiB
Python

import glob
import math
import numpy as np
import os
from scipy.io import wavfile
from torch.utils.data import IterableDataset
import torch.nn.functional as F
from enhancer.utils.random import create_unique_rng
from enhancer.utils.io import Audio
class Vctk(IterableDataset):
"""Dataset object for Voice Bank Corpus (VCTK) Dataset"""
def __init__(self,clean_path,noisy_path,duration=1.0,sampling_rate=48000):
if not os.path.isdir(clean_path):
raise ValueError(f"{clean_path} is not a valid directory")
if not os.path.isdir(noisy_path):
raise ValueError(f"{clean_path} is not a valid directory")
self.sampling_rate = sampling_rate
self.clean_path = clean_path
self.noisy_path = noisy_path
self.files_duration = self.get_matching_files_duration()
self.wav_samples = list(self.files_duration.keys())
self.duration = max(1.0,duration)
self.audio = Audio(self.sampling_rate,mono=True,return_tensor=True)
def get_matching_files_duration(self):
matching_wavfiles_dur = dict()
clean_filenames = [file.split('/')[-1] for file in glob.glob(os.path.join(self.clean_path,"*.wav"))]
noisy_filenames = [file.split('/')[-1] for file in glob.glob(os.path.join(self.noisy_path,"*.wav"))]
common_filenames = np.intersect1d(noisy_filenames,clean_filenames)
for file_name in common_filenames:
sr_clean, clean_file = wavfile.read(os.path.join(self.clean_path,file_name))
sr_noisy, noisy_file = wavfile.read(os.path.join(self.noisy_path,file_name))
if ((clean_file.shape[-1]==noisy_file.shape[-1]) and
(sr_clean==self.sampling_rate) and
(sr_noisy==self.sampling_rate)):
matching_wavfiles_dur.update({file_name:(clean_file.shape[-1]/self.sampling_rate)})
return matching_wavfiles_dur
def __iter__(self):
rng = create_unique_rng(12) ##pass epoch number here
while True:
file_name,*_ = rng.choices(self.wav_samples,k=1,
weights=[self.files_duration[file] for file in self.wav_samples])
file_duration = self.files_duration.get(file_name)
start_time = round(rng.uniform(0,file_duration- self.duration),2)
data = self.prepare_segment(file_name,start_time)
yield data
def prepare_segment(self,file_name:str, start_time:float):
clean_segment = self.audio(os.path.join(self.clean_path,file_name),
offset=start_time,duration=self.duration)
noisy_segment = self.audio(os.path.join(self.noisy_path,file_name),
offset=start_time,duration=self.duration)
clean_segment = F.pad(clean_segment,(0,int(self.duration*self.sampling_rate-clean_segment.shape[-1])))
noisy_segment = F.pad(noisy_segment,(0,int(self.duration*self.sampling_rate-noisy_segment.shape[-1])))
return {"clean": clean_segment,"noisy":noisy_segment}
def __len__(self):
return math.ceil(sum(self.files_duration.values())/self.duration)