81 lines
3.1 KiB
Python
81 lines
3.1 KiB
Python
|
|
import glob
|
|
import math
|
|
import numpy as np
|
|
import os
|
|
from scipy.io import wavfile
|
|
from torch.utils.data import IterableDataset
|
|
import torch.nn.functional as F
|
|
|
|
from enhancer.utils.random import create_unique_rng
|
|
from enhancer.utils.io import Audio
|
|
|
|
|
|
|
|
class Vctk(IterableDataset):
|
|
"""Dataset object for Voice Bank Corpus (VCTK) Dataset"""
|
|
|
|
def __init__(self,clean_path,noisy_path,duration=1.0,sampling_rate=48000):
|
|
|
|
if not os.path.isdir(clean_path):
|
|
raise ValueError(f"{clean_path} is not a valid directory")
|
|
|
|
if not os.path.isdir(noisy_path):
|
|
raise ValueError(f"{clean_path} is not a valid directory")
|
|
|
|
self.sampling_rate = sampling_rate
|
|
self.clean_path = clean_path
|
|
self.noisy_path = noisy_path
|
|
self.files_duration = self.get_matching_files_duration()
|
|
self.wav_samples = list(self.files_duration.keys())
|
|
self.duration = max(1.0,duration)
|
|
self.audio = Audio(self.sampling_rate,mono=True,return_tensor=True)
|
|
|
|
def get_matching_files_duration(self):
|
|
|
|
matching_wavfiles_dur = dict()
|
|
clean_filenames = [file.split('/')[-1] for file in glob.glob(os.path.join(self.clean_path,"*.wav"))]
|
|
noisy_filenames = [file.split('/')[-1] for file in glob.glob(os.path.join(self.noisy_path,"*.wav"))]
|
|
common_filenames = np.intersect1d(noisy_filenames,clean_filenames)
|
|
|
|
for file_name in common_filenames:
|
|
|
|
sr_clean, clean_file = wavfile.read(os.path.join(self.clean_path,file_name))
|
|
sr_noisy, noisy_file = wavfile.read(os.path.join(self.noisy_path,file_name))
|
|
if ((clean_file.shape[-1]==noisy_file.shape[-1]) and
|
|
(sr_clean==self.sampling_rate) and
|
|
(sr_noisy==self.sampling_rate)):
|
|
matching_wavfiles_dur.update({file_name:(clean_file.shape[-1]/self.sampling_rate)})
|
|
|
|
return matching_wavfiles_dur
|
|
|
|
def __iter__(self):
|
|
|
|
rng = create_unique_rng(12) ##pass epoch number here
|
|
|
|
while True:
|
|
|
|
file_name,*_ = rng.choices(self.wav_samples,k=1,
|
|
weights=[self.files_duration[file] for file in self.wav_samples])
|
|
file_duration = self.files_duration.get(file_name)
|
|
start_time = round(rng.uniform(0,file_duration- self.duration),2)
|
|
data = self.prepare_segment(file_name,start_time)
|
|
yield data
|
|
|
|
def prepare_segment(self,file_name:str, start_time:float):
|
|
|
|
clean_segment = self.audio(os.path.join(self.clean_path,file_name),
|
|
offset=start_time,duration=self.duration)
|
|
noisy_segment = self.audio(os.path.join(self.noisy_path,file_name),
|
|
offset=start_time,duration=self.duration)
|
|
clean_segment = F.pad(clean_segment,(0,int(self.duration*self.sampling_rate-clean_segment.shape[-1])))
|
|
noisy_segment = F.pad(noisy_segment,(0,int(self.duration*self.sampling_rate-noisy_segment.shape[-1])))
|
|
return {"clean": clean_segment,"noisy":noisy_segment}
|
|
|
|
def __len__(self):
|
|
|
|
return math.ceil(sum(self.files_duration.values())/self.duration)
|
|
|
|
|
|
|