mayavoz/enhancer/utils/io.py

84 lines
2.5 KiB
Python

import os
import librosa
from typing import Optional
from matplotlib.pyplot import axis
import numpy as np
import torch
import torchaudio
class Audio:
def __init__(
self,
sampling_rate:int=16000,
mono:bool=True,
return_tensor=True
) -> None:
self.sampling_rate = sampling_rate
self.mono = mono
self.return_tensor = return_tensor
def __call__(
self,
audio,
sampling_rate:Optional[int]=None,
offset:Optional[float] = None,
duration:Optional[float] = None
):
if isinstance(audio,str):
if os.path.exists(audio):
audio,sampling_rate = librosa.load(audio,sr=sampling_rate,mono=False,
offset=offset,duration=duration)
if len(audio.shape) == 1:
audio = audio.reshape(1,-1)
else:
raise FileNotFoundError(f"File {audio} deos not exist")
elif isinstance(audio,np.ndarray):
if len(audio.shape) == 1:
audio = audio.reshape(1,-1)
else:
raise ValueError("audio should be either filepath or numpy ndarray")
if self.mono:
audio = self.convert_mono(audio)
if sampling_rate:
audio = self.__class__.resample_audio(audio,self.sampling_rate,sampling_rate)
if self.return_tensor:
return torch.tensor(audio)
else:
return audio
@staticmethod
def convert_mono(
audio
):
if len(audio.shape)>2:
assert audio.shape[0] == 1, "convert mono only accepts single waveform"
audio = audio.reshape(audio.shape[1],audio.shape[2])
assert audio.shape[0] > audio.shape[1], "expected input format (num_channels,num_samples)"
num_channels,num_samples = audio.shape
if num_channels>1:
return audio.mean(axis=0).reshape(1,num_samples)
return audio
@staticmethod
def resample_audio(
audio,
sr:int,
target_sr:int
):
if sr!=target_sr:
if isinstance(audio,np.ndarray):
audio = librosa.resample(audio,orig_sr=sr,target_sr=target_sr)
elif isinstance(audio,torch.Tensor):
audio = torchaudio.functional.resample(audio,orig_freq=sr,new_freq=target_sr)
else:
raise ValueError("Input should be either numpy array or torch tensor")
return audio