mayavoz/enhancer/utils/loss.py

66 lines
1.9 KiB
Python

from turtle import forward
import torch
import torch.nn as nn
class mean_squared_error(nn.Module):
def __init__(self,reduction="mean"):
super().__init__()
self.loss_fun = nn.MSELoss(reduction=reduction)
def forward(self,prediction:torch.Tensor, target: torch.Tensor):
if prediction.size() != target.size() or target.ndim < 3:
raise TypeError(f"""Inputs must be of the same shape (batch_size,channels,samples)
got {prediction.size()} and {target.size()} instead""")
return self.loss_fun(prediction, target)
class mean_absolute_error(nn.Module):
def __init__(self,reduction="mean"):
super().__init__()
self.loss_fun = nn.L1Loss(reduction=reduction)
def forward(self, prediction:torch.Tensor, target: torch.Tensor):
if prediction.size() != target.size() or target.ndim < 3:
raise TypeError(f"""Inputs must be of the same shape (batch_size,channels,samples)
got {prediction.size()} and {target.size()} instead""")
return self.loss_fun(prediction, target)
class Avergeloss(nn.Module):
def __init__(self,losses):
super().__init__()
self.valid_losses = nn.ModuleList()
for loss in losses:
loss = self.validate_loss(loss)
self.valid_losses.append(loss())
def validate_loss(self,loss:str):
if loss not in LOSS_MAP.keys():
raise ValueError(f"Invalid loss function {loss}, available loss functions are {LOSS_MAP.keys()}")
else:
return LOSS_MAP[loss]
def forward(self,prediction:torch.Tensor, target:torch.Tensor):
loss = 0.0
for loss_fun in self.valid_losses:
loss += loss_fun(prediction, target)
return loss
LOSS_MAP = {"mea":mean_absolute_error, "mse": mean_squared_error}