import pytest import torch from enhancer.inference import Inference @pytest.mark.parametrize("audio",["tests/data/vctk/clean_testset_wav/p257_166.wav",torch.rand(1,2,48000)]) def test_read_input(audio): read_audio = Inference.read_input(audio,48000,16000) assert isinstance(read_audio,torch.Tensor) assert read_audio.shape[0] == 1 def test_batchify(): rand = torch.rand(1,1000) batched_rand = Inference.batchify(rand, window_size = 100, step_size=100) assert batched_rand.shape[0] == 12 def test_aggregate(): rand = torch.rand(12,1,100) agg_rand = Inference.aggreagate(data=rand,window_size=100,total_frames=1000,step_size=100) assert agg_rand.shape[-1] == 1000