import math import multiprocessing import os from typing import Optional import pytorch_lightning as pl import torch.nn.functional as F from torch.utils.data import DataLoader, Dataset, IterableDataset from enhancer.data.fileprocessor import Fileprocessor from enhancer.utils import check_files from enhancer.utils.config import Files from enhancer.utils.io import Audio from enhancer.utils.random import create_unique_rng class TrainDataset(IterableDataset): def __init__(self, dataset): self.dataset = dataset def __iter__(self): return self.dataset.train__iter__() def __len__(self): return self.dataset.train__len__() class ValidDataset(Dataset): def __init__(self, dataset): self.dataset = dataset def __getitem__(self, idx): return self.dataset.val__getitem__(idx) def __len__(self): return self.dataset.val__len__() class TaskDataset(pl.LightningDataModule): def __init__( self, name: str, root_dir: str, files: Files, duration: float = 1.0, sampling_rate: int = 48000, matching_function=None, batch_size=32, num_workers: Optional[int] = None, ): super().__init__() self.name = name self.files, self.root_dir = check_files(root_dir, files) self.duration = duration self.sampling_rate = sampling_rate self.batch_size = batch_size self.matching_function = matching_function self._validation = [] if num_workers is None: num_workers = multiprocessing.cpu_count() // 2 self.num_workers = num_workers def setup(self, stage: Optional[str] = None): if stage in ("fit", None): train_clean = os.path.join(self.root_dir, self.files.train_clean) train_noisy = os.path.join(self.root_dir, self.files.train_noisy) fp = Fileprocessor.from_name( self.name, train_clean, train_noisy, self.matching_function ) self.train_data = fp.prepare_matching_dict() val_clean = os.path.join(self.root_dir, self.files.test_clean) val_noisy = os.path.join(self.root_dir, self.files.test_noisy) fp = Fileprocessor.from_name( self.name, val_clean, val_noisy, self.matching_function ) val_data = fp.prepare_matching_dict() for item in val_data: clean, noisy, total_dur = item.values() if total_dur < self.duration: continue num_segments = round(total_dur / self.duration) for index in range(num_segments): start_time = index * self.duration self._validation.append( ({"clean": clean, "noisy": noisy}, start_time) ) def train_dataloader(self): return DataLoader( TrainDataset(self), batch_size=self.batch_size, num_workers=self.num_workers, ) def val_dataloader(self): return DataLoader( ValidDataset(self), batch_size=self.batch_size, num_workers=self.num_workers, ) class EnhancerDataset(TaskDataset): """ Dataset object for creating clean-noisy speech enhancement datasets paramters: name : str name of the dataset root_dir : str root directory of the dataset containing clean/noisy folders files : Files dataclass containing train_clean, train_noisy, test_clean, test_noisy folder names (refer enhancer.utils.Files dataclass) duration : float expected audio duration of single audio sample for training sampling_rate : int desired sampling rate batch_size : int batch size of each batch num_workers : int num workers to be used while training matching_function : str maching functions - (one_to_one,one_to_many). Default set to None. use one_to_one mapping for datasets with one noisy file for each clean file use one_to_many mapping for multiple noisy files for each clean file """ def __init__( self, name: str, root_dir: str, files: Files, duration=1.0, sampling_rate=48000, matching_function=None, batch_size=32, num_workers: Optional[int] = None, ): super().__init__( name=name, root_dir=root_dir, files=files, sampling_rate=sampling_rate, duration=duration, matching_function=matching_function, batch_size=batch_size, num_workers=num_workers, ) self.sampling_rate = sampling_rate self.files = files self.duration = max(1.0, duration) self.audio = Audio(self.sampling_rate, mono=True, return_tensor=True) def setup(self, stage: Optional[str] = None): super().setup(stage=stage) def train__iter__(self): rng = create_unique_rng(self.model.current_epoch) while True: file_dict, *_ = rng.choices( self.train_data, k=1, weights=[file["duration"] for file in self.train_data], ) file_duration = file_dict["duration"] start_time = round(rng.uniform(0, file_duration - self.duration), 2) data = self.prepare_segment(file_dict, start_time) yield data def val__getitem__(self, idx): return self.prepare_segment(*self._validation[idx]) def prepare_segment(self, file_dict: dict, start_time: float): clean_segment = self.audio( file_dict["clean"], offset=start_time, duration=self.duration ) noisy_segment = self.audio( file_dict["noisy"], offset=start_time, duration=self.duration ) clean_segment = F.pad( clean_segment, ( 0, int( self.duration * self.sampling_rate - clean_segment.shape[-1] ), ), ) noisy_segment = F.pad( noisy_segment, ( 0, int( self.duration * self.sampling_rate - noisy_segment.shape[-1] ), ), ) return {"clean": clean_segment, "noisy": noisy_segment} def train__len__(self): return math.ceil( sum([file["duration"] for file in self.train_data]) / self.duration ) def val__len__(self): return len(self._validation)