from logging import root import pytest import torch import numpy as np from enhancer.utils.io import Audio from enhancer.utils.config import Files from enhancer.utils.fileprocessor import Fileprocessor def test_io_channel(): input_audio = np.random.rand(2,32000) audio = Audio(mono=True,return_tensor=False) output_audio = audio(input_audio) assert output_audio.shape[0] == 1 def test_io_resampling(): input_audio = np.random.rand(1,32000) resampled_audio = Audio.resample_audio(input_audio,16000,8000) input_audio = torch.rand(1,32000) resampled_audio_pt = Audio.pt_resample_audio(input_audio,16000,8000) assert resampled_audio.shape[1] == resampled_audio_pt.size(1) == 16000 def test_fileprocessor_vctk(): fp = Fileprocessor.from_name("vctk","tests/data/vctk/clean_testset_wav", "tests/data/vctk/noisy_testset_wav",48000) matching_dict = fp.prepare_matching_dict() assert len(matching_dict)==2 @pytest.mark.parametrize("dataset_name",["vctk","dns-2020"]) def test_fileprocessor_names(dataset_name): fp = Fileprocessor.from_name(dataset_name,"clean_dir","noisy_dir",16000) assert hasattr(fp.matching_function, '__call__') def test_fileprocessor_invaliname(): with pytest.raises(ValueError): fp = Fileprocessor.from_name("undefined","clean_dir","noisy_dir",16000).prepare_matching_dict()