import glob import math import numpy as np import os from scipy.io import wavfile from torch.utils.data import IterableDataset import torch.nn.functional as F from enhancer.utils.random import create_unique_rng from enhancer.utils.io import Audio from enhancer.utils import Fileprocessor class EnhancerDataset(IterableDataset): """Dataset object for creating clean-noisy speech enhancement datasets""" def __init__(self,name:str,clean_dir,noisy_dir,duration=1.0,sampling_rate=48000, matching_function=None): if not os.path.isdir(clean_dir): raise ValueError(f"{clean_dir} is not a valid directory") if not os.path.isdir(noisy_dir): raise ValueError(f"{clean_dir} is not a valid directory") self.sampling_rate = sampling_rate self.clean_dir = clean_dir self.noisy_dir = noisy_dir self.duration = max(1.0,duration) self.audio = Audio(self.sampling_rate,mono=True,return_tensor=True) fp = Fileprocessor.from_name(name,clean_dir,noisy_dir,matching_function) self.valid_files = fp.prepare_matching_dict() def __iter__(self): rng = create_unique_rng(12) ##pass epoch number here while True: file_dict,*_ = rng.choices(self.valid_files,k=1, weights=[self.valid_files[file]['duration'] for file in self.valid_files]) file_duration = file_dict['duration'] start_time = round(rng.uniform(0,file_duration- self.duration),2) data = self.prepare_segment(file_dict,start_time) yield data def prepare_segment(self,file_dict:dict, start_time:float): clean_segment = self.audio(file_dict.keys()[0], offset=start_time,duration=self.duration) noisy_segment = self.audio(file_dict['noisy'], offset=start_time,duration=self.duration) clean_segment = F.pad(clean_segment,(0,int(self.duration*self.sampling_rate-clean_segment.shape[-1]))) noisy_segment = F.pad(noisy_segment,(0,int(self.duration*self.sampling_rate-noisy_segment.shape[-1]))) return {"clean": clean_segment,"noisy":noisy_segment} def __len__(self): return math.ceil(sum([file["duration"] for file in self.valid_files])/self.duration)