import math import multiprocessing import os import random from itertools import chain, cycle from typing import Optional import pytorch_lightning as pl import torch import torch.nn.functional as F from torch.utils.data import DataLoader, Dataset, IterableDataset from enhancer.data.fileprocessor import Fileprocessor from enhancer.utils import check_files from enhancer.utils.config import Files from enhancer.utils.io import Audio from enhancer.utils.random import create_unique_rng class TrainDataset(IterableDataset): def __init__(self, dataset): self.dataset = dataset def __iter__(self): return self.dataset.train__iter__() def __len__(self): return self.dataset.train__len__() class ValidDataset(Dataset): def __init__(self, dataset): self.dataset = dataset def __getitem__(self, idx): return self.dataset.val__getitem__(idx) def __len__(self): return self.dataset.val__len__() class TestDataset(Dataset): def __init__(self, dataset): self.dataset = dataset def __getitem__(self, idx): return self.dataset.test__getitem__(idx) def __len__(self): return self.dataset.test__len__() class TaskDataset(pl.LightningDataModule): def __init__( self, name: str, root_dir: str, files: Files, valid_minutes: float = 0.20, duration: float = 1.0, stride=None, sampling_rate: int = 48000, matching_function=None, batch_size=32, num_workers: Optional[int] = None, ): super().__init__() self.name = name self.files, self.root_dir = check_files(root_dir, files) self.duration = duration self.stride = stride or duration self.sampling_rate = sampling_rate self.batch_size = batch_size self.matching_function = matching_function self._validation = [] if num_workers is None: num_workers = multiprocessing.cpu_count() // 2 self.num_workers = num_workers print("num_workers-main", self.num_workers) if valid_minutes > 0.0: self.valid_minutes = valid_minutes else: raise ValueError("valid_minutes must be greater than 0") def setup(self, stage: Optional[str] = None): """ prepare train/validation/test data splits """ if stage in ("fit", None): train_clean = os.path.join(self.root_dir, self.files.train_clean) train_noisy = os.path.join(self.root_dir, self.files.train_noisy) fp = Fileprocessor.from_name( self.name, train_clean, train_noisy, self.matching_function ) train_data = fp.prepare_matching_dict() train_data, self.val_data = self.train_valid_split( train_data, valid_minutes=self.valid_minutes, random_state=42 ) self.train_data = self.prepare_traindata(train_data) self._validation = self.prepare_mapstype(self.val_data) print( "train_data_size", sum([len(item) for item in self.train_data]) ) test_clean = os.path.join(self.root_dir, self.files.test_clean) test_noisy = os.path.join(self.root_dir, self.files.test_noisy) fp = Fileprocessor.from_name( self.name, test_clean, test_noisy, self.matching_function ) test_data = fp.prepare_matching_dict() self._test = self.prepare_mapstype(test_data) def train_valid_split( self, data, valid_minutes: float = 20, random_state: int = 42 ): valid_minutes *= 60 valid_min_now = 0.0 valid_indices = [] random_indices = list(range(0, len(data))) rng = create_unique_rng(random_state) rng.shuffle(random_indices) i = 0 while valid_min_now <= valid_minutes: valid_indices.append(random_indices[i]) valid_min_now += data[random_indices[i]]["duration"] i += 1 train_data = [ item for i, item in enumerate(data) if i not in valid_indices ] valid_data = [item for i, item in enumerate(data) if i in valid_indices] return train_data, valid_data def prepare_traindata(self, data): train_data = [] for item in data: samples_metadata = [] clean, noisy, total_dur = item.values() num_segments = self.get_num_segments( total_dur, self.duration, self.stride ) for index in range(num_segments): start = index * self.stride samples_metadata.append( ({"clean": clean, "noisy": noisy}, start) ) train_data.append(samples_metadata) return train_data[:25] @staticmethod def get_num_segments(file_duration, duration, stride): if file_duration < duration: num_segments = 1 else: num_segments = math.ceil((file_duration - duration) / stride) + 1 return num_segments def prepare_mapstype(self, data): metadata = [] for item in data: clean, noisy, total_dur = item.values() if total_dur < self.duration: metadata.append(({"clean": clean, "noisy": noisy}, 0.0)) else: num_segments = round(total_dur / self.duration) for index in range(num_segments): start_time = index * self.duration metadata.append( ({"clean": clean, "noisy": noisy}, start_time) ) return metadata def train_collatefn(self, batch): output = {"noisy": [], "clean": []} for item in batch: output["noisy"].append(item["noisy"]) output["clean"].append(item["clean"]) output["clean"] = torch.stack(output["clean"], dim=0) output["noisy"] = torch.stack(output["noisy"], dim=0) return output def worker_init_fn(self, _): worker_info = torch.utils.data.get_worker_info() dataset = worker_info.dataset worker_id = worker_info.id split_size = len(dataset.dataset.train_data) // worker_info.num_workers dataset.data = dataset.dataset.train_data[ worker_id * split_size : (worker_id + 1) * split_size ] def train_dataloader(self): return DataLoader( TrainDataset(self), batch_size=None, num_workers=self.num_workers, collate_fn=self.train_collatefn, worker_init_fn=self.worker_init_fn, ) def val_dataloader(self): return DataLoader( ValidDataset(self), batch_size=self.batch_size, num_workers=self.num_workers, ) def test_dataloader(self): return DataLoader( TestDataset(self), batch_size=self.batch_size, num_workers=self.num_workers, ) class EnhancerDataset(TaskDataset): """ Dataset object for creating clean-noisy speech enhancement datasets paramters: name : str name of the dataset root_dir : str root directory of the dataset containing clean/noisy folders files : Files dataclass containing train_clean, train_noisy, test_clean, test_noisy folder names (refer enhancer.utils.Files dataclass) duration : float expected audio duration of single audio sample for training sampling_rate : int desired sampling rate batch_size : int batch size of each batch num_workers : int num workers to be used while training matching_function : str maching functions - (one_to_one,one_to_many). Default set to None. use one_to_one mapping for datasets with one noisy file for each clean file use one_to_many mapping for multiple noisy files for each clean file """ def __init__( self, name: str, root_dir: str, files: Files, valid_minutes=5.0, duration=1.0, stride=0.5, sampling_rate=48000, matching_function=None, batch_size=32, num_workers: Optional[int] = None, ): super().__init__( name=name, root_dir=root_dir, files=files, valid_minutes=valid_minutes, sampling_rate=sampling_rate, duration=duration, matching_function=matching_function, batch_size=batch_size, num_workers=num_workers, ) self.sampling_rate = sampling_rate self.files = files self.duration = max(1.0, duration) self.audio = Audio(self.sampling_rate, mono=True, return_tensor=True) self.stride = stride or duration def setup(self, stage: Optional[str] = None): super().setup(stage=stage) def random_sample(self, train_data): return random.sample(train_data, len(train_data)) def train__iter__(self): rng = create_unique_rng(self.model.current_epoch) train_data = rng.sample(self.train_data, len(self.train_data)) return zip( *[ self.get_stream(self.random_sample(train_data)) for i in range(self.batch_size) ] ) def get_stream(self, data): return chain.from_iterable(map(self.process_data, cycle(data))) def process_data(self, data): for item in data: yield self.prepare_segment(*item) @staticmethod def get_num_segments(file_duration, duration, stride): if file_duration < duration: num_segments = 1 else: num_segments = math.ceil((file_duration - duration) / stride) + 1 return num_segments def val__getitem__(self, idx): return self.prepare_segment(*self._validation[idx]) def test__getitem__(self, idx): return self.prepare_segment(*self._test[idx]) def prepare_segment(self, file_dict: dict, start_time: float): clean_segment = self.audio( file_dict["clean"], offset=start_time, duration=self.duration ) noisy_segment = self.audio( file_dict["noisy"], offset=start_time, duration=self.duration ) clean_segment = F.pad( clean_segment, ( 0, int( self.duration * self.sampling_rate - clean_segment.shape[-1] ), ), ) noisy_segment = F.pad( noisy_segment, ( 0, int( self.duration * self.sampling_rate - noisy_segment.shape[-1] ), ), ) return { "clean": clean_segment, "noisy": noisy_segment, "name": file_dict["clean"].split("/")[-1] + "->" + str(start_time), } def train__len__(self): return sum([len(item) for item in self.train_data]) // (self.batch_size) def val__len__(self): return len(self._validation) def test__len__(self): return len(self._test)