from modulefinder import Module from turtle import forward import torch import torch.nn as nn class mean_squared_error(nn.Module): def __init__(self,reduction="mean"): super().__init__() self.loss_fun = nn.MSELoss(reduction=reduction) def forward(self,prediction:torch.Tensor, target: torch.Tensor): if prediction.size() != target.size() or target.ndim < 3: raise TypeError(f"""Inputs must be of the same shape (batch_size,channels,samples) got {prediction.size()} and {target.size()} instead""") return self.loss_fun(prediction, target) class mean_absolute_error(nn.Module): def __init__(self,reduction="mean"): super().__init__() self.loss_fun = nn.L1Loss(reduction=reduction) def forward(self, prediction:torch.Tensor, target: torch.Tensor): if prediction.size() != target.size() or target.ndim < 3: raise TypeError(f"""Inputs must be of the same shape (batch_size,channels,samples) got {prediction.size()} and {target.size()} instead""") return self.loss_fun(prediction, target) class Si_SDR(nn.Module): def __init__( self ): pass def forward(self,prediction:torch.Tensor, target:torch.Tensor): if prediction.size() != target.size() or target.ndim < 3: raise TypeError(f"""Inputs must be of the same shape (batch_size,channels,samples) got {prediction.size()} and {target.size()} instead""") prediction,target = prediction.unsqueeze(1),target.unsqueeze(1) class Avergeloss(nn.Module): def __init__(self,losses): super().__init__() self.valid_losses = nn.ModuleList() for loss in losses: loss = self.validate_loss(loss) self.valid_losses.append(loss()) def validate_loss(self,loss:str): if loss not in LOSS_MAP.keys(): raise ValueError(f"Invalid loss function {loss}, available loss functions are {tuple([loss for loss in LOSS_MAP.keys()])}") else: return LOSS_MAP[loss] def forward(self,prediction:torch.Tensor, target:torch.Tensor): loss = 0.0 for loss_fun in self.valid_losses: loss += loss_fun(prediction, target) return loss LOSS_MAP = {"mae":mean_absolute_error, "mse": mean_squared_error}