Compare commits

..

72 Commits

Author SHA1 Message Date
shahules786 31cd404e03 rmv mdkir 2022-11-20 19:58:20 +05:30
shahules786 8cf8dd9717 20hrs 2022-11-20 19:56:56 +05:30
shahules786 c2b2b83fd5 20hrs 2022-11-20 19:16:54 +05:30
shahules786 bcb94d5f34 20hrs 2022-11-20 19:11:41 +05:30
shahules786 e0abb458d5 15hrs 2022-11-03 10:40:22 +05:30
shahules786 e322c6280d 15hrs 2022-11-03 09:52:18 +05:30
shahules786 7548647dfb fix cp 2022-11-02 16:52:58 +05:30
shahules786 1035fbb236 15hrs 2022-11-02 10:50:38 +05:30
shahules786 a06c0a3865 generate test 1hr 2022-10-28 09:55:25 +05:30
shahules786 64f52fe010 redo data 2022-10-27 21:39:33 +05:30
shahules786 078d3eb244 fix num hrs 2022-10-17 15:01:04 +05:30
shahules786 629adf0232 dns 30 hrs demucs 2022-10-17 11:05:55 +05:30
shahules786 501948e866 dns 30 hrs demucs 2022-10-17 11:04:43 +05:30
shahules786 aa61056376 generate 1hrs 2022-10-16 11:44:22 +05:30
shahules786 187e48d125 generate 20hrs 2022-10-16 11:20:01 +05:30
shahules786 7882b8cca3 generate test 2022-10-15 11:46:52 +05:30
shahules786 789da44114 generate test 2022-10-15 11:08:14 +05:30
shahules786 78138c5f93 generate test 2022-10-15 10:13:34 +05:30
shahules786 b8a05c775c mv files 2022-10-14 16:44:37 +05:30
shahules786 2b68598d7b print files 2022-10-14 15:23:22 +05:30
shahules786 29a432540e print files 2022-10-14 15:22:37 +05:30
shahules786 8d1c057b86 changes to prep dns 2020 2022-10-14 15:20:34 +05:30
shahules786 6e0f69f575 Merge branch 'dev' of https://github.com/shahules786/enhancer into dev-hawk 2022-10-14 12:46:48 +05:30
shahules786 0e58691a2c demucs 250 2022-10-14 12:45:34 +05:30
shahules786 807f4b93ea Merge branch 'dev' of https://github.com/shahules786/enhancer into dev-hawk 2022-10-14 12:43:47 +05:30
shahules786 315d646347 Merge branch 'dev' of https://github.com/shahules786/enhancer into dev-hawk 2022-10-14 11:32:59 +05:30
shahules786 f34e49e341 WaveUnet 2022-10-14 11:15:16 +05:30
shahules786 fa47860f57 set BS to 256 2022-10-14 11:12:16 +05:30
shahules786 f7eb0a600c 500 epochs 2022-10-14 10:47:20 +05:30
shahules786 ba2d00648c demucs 100 epochs 2022-10-13 10:57:24 +05:30
shahules786 8a55a77640 run 100 epochs 2022-10-13 10:52:22 +05:30
shahules786 94a4ea38ed Merge branch 'dev' of https://github.com/shahules786/enhancer into dev-hawk 2022-10-13 10:50:59 +05:30
shahules786 8d25b0ed79 reduce epochs 2022-10-12 20:27:05 +05:30
shahules786 09ba645315 fix logging 2022-10-12 20:23:55 +05:30
shahules786 8906496366 waveunet 500 epochs 2022-10-12 10:49:00 +05:30
shahules786 e4a2eb7844 Merge branch 'dev' of https://github.com/shahules786/enhancer into dev-hawk 2022-10-12 10:32:52 +05:30
shahules786 8a6af87627 pesq 2022-10-11 21:56:55 +05:30
shahules786 5a392332ba ensure 2 gpus 2022-10-11 21:56:35 +05:30
shahules786 f66a5236e1 Revert "demucs"
This reverts commit d415bb0c59.
2022-10-11 21:54:47 +05:30
shahules786 d415bb0c59 demucs 2022-10-11 21:41:19 +05:30
shahules786 8c1524a998 500 epochs 2022-10-11 21:38:27 +05:30
shahules786 7161f84a27 Merge branch 'dev' of https://github.com/shahules786/enhancer into dev-hawk 2022-10-11 21:36:59 +05:30
shahules786 2c79e60a85 params 2022-10-11 21:33:19 +05:30
shahules786 41ee2fce0b Merge branch 'dev' of https://github.com/shahules786/enhancer into dev-hawk 2022-10-11 21:30:40 +05:30
shahules786 0c5db496e2 run waveunet 2022-10-11 16:51:41 +05:30
shahules786 031221b79e merge dev 2022-10-11 16:50:09 +05:30
shahules786 50062eaf40 rmv inplace operation 2022-10-11 15:10:34 +05:30
shahules786 0b02b73094 run demucs 32 2022-10-11 11:12:44 +05:30
shahules786 2ccc2822cd Merge branch 'dev' of https://github.com/shahules786/enhancer into dev-hawk 2022-10-11 11:12:02 +05:30
shahules786 1667de624e min settings 2022-10-10 21:04:43 +05:30
shahules786 32579b7a39 Merge branch 'dev' of https://github.com/shahules786/enhancer into dev-hawk 2022-10-10 21:04:01 +05:30
shahules786 bb68e9e4eb demucs 2022-10-10 16:48:40 +05:30
shahules786 a21ef707ad ensure gpu 2022-10-10 15:59:48 +05:30
shahules786 81c5f13ff6 log metric 2022-10-10 15:32:37 +05:30
shahules786 a417e226f3 testrun for metrics 2022-10-10 12:49:41 +05:30
shahules786 5d8f49d78e Merge branch 'dev' of https://github.com/shahules786/enhancer into dev-hawk 2022-10-10 12:48:11 +05:30
shahules786 14156743f9 Merge branch 'dev' of https://github.com/shahules786/enhancer into dev-hawk 2022-10-08 11:04:32 +05:30
shahules786 845575a2ad config 2022-10-08 10:18:22 +05:30
shahules786 c9b78b0e73 Merge branch 'dev' of https://github.com/shahules786/enhancer into dev-hawk 2022-10-08 10:12:38 +05:30
shahules786 3068476512 reduce batch_size 2022-10-08 09:59:23 +05:30
shahules786 ffb364196e increase sr 2022-10-07 11:32:33 +05:30
shahules786 52cefcb962 run demucs 2022-10-07 10:56:14 +05:30
shahules786 61923f6d68 config 2022-10-07 10:46:06 +05:30
shahules786 e90efe3163 Merge branch 'dev' of https://github.com/shahules786/enhancer into dev-hawk 2022-10-07 10:43:34 +05:30
shahules786 aa043aaf40 rmv max_steps 2022-10-06 11:52:05 +05:30
shahules786 4f6ccadf4b Merge branch 'dev' of https://github.com/shahules786/enhancer into dev-hawk 2022-10-06 11:49:40 +05:30
shahules786 0e982cd493 Merge branch 'dev' of https://github.com/shahules786/enhancer into dev-hawk 2022-10-06 10:33:26 +05:30
shahules786 0787d946da decrease epochs 2022-10-06 10:21:07 +05:30
shahules786 e06ba07889 Merge branch 'dev' of https://github.com/shahules786/enhancer into dev-hawk 2022-10-06 10:19:38 +05:30
shahules786 741fd7b87c run cli 2022-10-06 09:55:01 +05:30
shahules786 a064151e2e Merge branch 'dev' of https://github.com/shahules786/enhancer into dev-hawk 2022-10-06 09:54:14 +05:30
shahules786 25557757c7 inc epochs 2022-10-03 21:26:59 +05:30
107 changed files with 782 additions and 3584 deletions

View File

@ -1,5 +1,5 @@
[flake8]
per-file-ignores = "mayavoz/model/__init__.py:F401"
per-file-ignores = __init__.py:F401
ignore = E203, E266, E501, W503
# line length is intentionally set to 80 here because black uses Bugbear
# See https://github.com/psf/black/blob/master/README.md#line-length for more details

1
.gitattributes vendored
View File

@ -1 +0,0 @@
notebooks/** linguist-vendored

View File

@ -1,13 +1,13 @@
# This workflow will install Python dependencies, run tests and lint with a variety of Python versions
# For more information see: https://help.github.com/actions/language-and-framework-guides/using-python-with-github-actions
name: mayavoz
name: Enhancer
on:
push:
branches: [ main ]
branches: [ dev ]
pull_request:
branches: [ main ]
branches: [ dev ]
jobs:
build:
runs-on: ubuntu-latest
@ -40,12 +40,12 @@ jobs:
sudo apt-get install libsndfile1
pip install -r requirements.txt
pip install black pytest-cov
- name: Install mayavoz
- name: Install enhancer
run: |
pip install -e .[dev,testing]
- name: Run black
run:
black --check . --exclude mayavoz/version.py
black --check . --exclude enhancer/version.py
- name: Test with pytest
run:
pytest tests --cov=mayavoz/
pytest tests --cov=enhancer/

5
.gitignore vendored
View File

@ -1,10 +1,5 @@
#local
cleaned_my_voice.wav
lightning_logs/
my_voice.wav
pretrained/
*.ckpt
*_local.yaml
cli/train_config/dataset/Vctk_local.yaml
.DS_Store
outputs/

View File

@ -23,7 +23,6 @@ repos:
hooks:
- id: flake8
args: ['--ignore=E203,E501,F811,E712,W503']
exclude: __init__.py
# Formatting, Whitespace, etc
- repo: https://github.com/pre-commit/pre-commit-hooks
@ -41,4 +40,5 @@ repos:
- id: end-of-file-fixer
- id: requirements-txt-fixer
- id: mixed-line-ending
exclude: noisyspeech_synthesizer.cfg
args: ['--fix=no']

View File

@ -1,46 +0,0 @@
# Contributing
Hi there 👋
If you're reading this I hope that you're looking forward to adding value to Mayavoz. This document will help you to get started with your journey.
## How to get your code in Mayavoz
1. We use git and GitHub.
2. Fork the mayavoz repository (https://github.com/shahules786/mayavoz) on GitHub under your own account. (This creates a copy of mayavoz under your account, and GitHub knows where it came from, and we typically call this “upstream”.)
3. Clone your own mayavoz repository. git clone https://github.com/ <your-account> /mayavoz (This downloads the git repository to your machine, git knows where it came from, and calls it “origin”.)
4. Create a branch for each specific feature you are developing. git checkout -b your-branch-name
5. Make + commit changes. git add files-you-changed ... git commit -m "Short message about what you did"
6. Push the branch to your GitHub repository. git push origin your-branch-name
7. Navigate to GitHub, and create a pull request from your branch to the upstream repository mayavoz/mayavoz, to the “develop” branch.
8. The Pull Request (PR) appears on the upstream repository. Discuss your contribution there. If you push more changes to your branch on GitHub (on your repository), they are added to the PR.
9. When the reviewer is satisfied that the code improves repository quality, they can merge.
Note that CI tests will be run when you create a PR. If you want to be sure that your code will not fail these tests, we have set up pre-commit hooks that you can install.
**If you're worried about things not being perfect with your code, we will work togethor and make it perfect. So, make your move!**
## Formating
We use [black](https://black.readthedocs.io/en/stable/) and [flake8](https://flake8.pycqa.org/en/latest/) for code formating. Please ensure that you use the same before submitting the PR.
## Testing
We adopt unit testing using [pytest](https://docs.pytest.org/en/latest/contents.html)
Please make sure that adding your new component does not decrease test coverage.
## Other tools
The use of [per-commit](https://pre-commit.com/) is recommended to ensure different requirements such as code formating, etc.
## How to start contributing to Mayavoz?
1. Checkout issues marked as `good first issue`, let us know you're interested in working on some issue by commenting under it.
2. For others, I would suggest you to explore mayavoz. One way to do is to use it to train your own model. This was you might end by finding a new unreported bug or getting an idea to improve Mayavoz.

20
LICENSE
View File

@ -1,20 +0,0 @@
MIT License
Copyright (c) 2022 Shahul Es
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

View File

@ -1,4 +0,0 @@
recursive-include mayavoz *.py
recursive-include mayavoz *.yaml
global-exclude *.pyc
global-exclude __pycache__

View File

@ -2,52 +2,24 @@
<img src="https://user-images.githubusercontent.com/25312635/195514652-e4526cd1-1177-48e9-a80d-c8bfdb95d35f.png" />
</p>
![GitHub Workflow Status](https://img.shields.io/github/actions/workflow/status/shahules786/mayavoz/ci.yaml?branch=main)
![GitHub](https://img.shields.io/github/license/shahules786/enhancer)
![GitHub issues](https://img.shields.io/github/issues/shahules786/enhancer?logo=GitHub)
![GitHub Repo stars](https://img.shields.io/github/stars/shahules786/enhancer?style=social)
mayavoz is a Pytorch-based opensource toolkit for speech enhancement. It is designed to save time for audio researchers. Is provides easy to use pretrained audio enhancement models and facilitates highly customisable model training.
mayavoz is a Pytorch-based opensource toolkit for speech enhancement. It is designed to save time for audio practioners & researchers. It provides easy to use pretrained speech enhancement models and facilitates highly customisable model training.
| **[Quick Start](#quick-start-fire)** | **[Installation](#installation)** | **[Tutorials](https://github.com/shahules786/enhancer/tree/main/notebooks)** | **[Available Recipes](#recipes)** | **[Demo](#demo)**
| **[Quick Start]()** | **[Installation]()** | **[Tutorials]()** | **[Available Recipes]()**
## Key features :key:
* Various pretrained models nicely integrated with [huggingface hub](https://huggingface.co/docs/hub/index) :hugs: that users can select and use without any hastle.
* :package: Ability to train and validate your own custom speech enhancement models with just under 10 lines of code!
* Various pretrained models nicely integrated with huggingface :hugs: that users can select and use without any hastle.
* :package: Ability to train and validation your own custom speech enhancement models with just under 10 lines of code!
* :magic_wand: A command line tool that facilitates training of highly customisable speech enhacement models from the terminal itself!
* :zap: Supports multi-gpu training integrated with [Pytorch Lightning](https://pytorchlightning.ai/).
* :shield: data augmentations integrated using [torch-augmentations](https://github.com/asteroid-team/torch-audiomentations)
## Demo
Noisy speech followed by enhanced version.
https://user-images.githubusercontent.com/25312635/203756185-737557f4-6e21-4146-aa2c-95da69d0de4c.mp4
* :zap: Supports multi-gpu training integrated with Pytorch Lightning.
## Quick Start :fire:
``` python
from mayavoz.models import Mayamodel
from mayavoz import Mayamodel
model = Mayamodel.from_pretrained("shahules786/mayavoz-waveunet-valentini-28spk")
model.enhance("noisy_audio.wav")
model = Mayamodel.from_pretrained("mayavoz/waveunet")
model("noisy_audio.wav")
```
## Recipes
| Model | Dataset | STOI | PESQ | URL |
| :---: | :---: | :---: | :---: | :---: |
| WaveUnet | Valentini-28spk | 0.836 | 2.78 | shahules786/mayavoz-waveunet-valentini-28spk |
| Demucs | Valentini-28spk | 0.961 | 2.56 | shahules786/mayavoz-demucs-valentini-28spk |
| DCCRN | Valentini-28spk | 0.724 | 2.55 | shahules786/mayavoz-dccrn-valentini-28spk |
| Demucs | MS-SNSD-20hrs | 0.56 | 1.26 | shahules786/mayavoz-demucs-ms-snsd-20 |
Test scores are based on respective test set associated with train dataset.
**See [tutorials](/notebooks/) to train your custom model**
## Installation
Only Python 3.8+ is officially supported (though it might work with Python 3.7)
@ -69,10 +41,3 @@ git clone url
cd mayavoz
pip install -e .
```
## Support
For commercial enquiries and scientific consulting, please [contact me](https://shahules786.github.io/).
### Acknowledgements
Sincere gratitude to [AMPLYFI](https://amplyfi.com/) for supporting this project.

76
audiolib.py Normal file
View File

@ -0,0 +1,76 @@
# -*- coding: utf-8 -*-
"""
Created on Wed Jun 26 15:54:05 2019
@author: chkarada
"""
import os
import numpy as np
import soundfile as sf
# Function to read audio
def audioread(path, norm=True, start=0, stop=None):
path = os.path.abspath(path)
if not os.path.exists(path):
raise ValueError("[{}] does not exist!".format(path))
try:
x, sr = sf.read(path, start=start, stop=stop)
except RuntimeError: # fix for sph pcm-embedded shortened v2
print("WARNING: Audio type not supported")
if len(x.shape) == 1: # mono
if norm:
rms = (x**2).mean() ** 0.5
scalar = 10 ** (-25 / 20) / (rms)
x = x * scalar
return x, sr
else: # multi-channel
x = x.T
x = x.sum(axis=0) / x.shape[0]
if norm:
rms = (x**2).mean() ** 0.5
scalar = 10 ** (-25 / 20) / (rms)
x = x * scalar
return x, sr
# Funtion to write audio
def audiowrite(data, fs, destpath, norm=False):
if norm:
eps = 0.0
rms = (data**2).mean() ** 0.5
scalar = 10 ** (-25 / 10) / (rms + eps)
data = data * scalar
if max(abs(data)) >= 1:
data = data / max(abs(data), eps)
destpath = os.path.abspath(destpath)
destdir = os.path.dirname(destpath)
if not os.path.exists(destdir):
os.makedirs(destdir)
sf.write(destpath, data, fs)
return
# Function to mix clean speech and noise at various SNR levels
def snr_mixer(clean, noise, snr):
# Normalizing to -25 dB FS
rmsclean = (clean**2).mean() ** 0.5
scalarclean = 10 ** (-25 / 20) / rmsclean
clean = clean * scalarclean
rmsclean = (clean**2).mean() ** 0.5
rmsnoise = (noise**2).mean() ** 0.5
scalarnoise = 10 ** (-25 / 20) / rmsnoise
noise = noise * scalarnoise
rmsnoise = (noise**2).mean() ** 0.5
# Set the noise level for a given SNR
noisescalar = np.sqrt(rmsclean / (10 ** (snr / 20)) / rmsnoise)
noisenewlevel = noise * noisescalar
noisyspeech = clean + noisenewlevel
return clean, noisenewlevel, noisyspeech

View File

@ -1,2 +1 @@
__import__("pkg_resources").declare_namespace(__name__)
from mayavoz.models import Mayamodel

View File

@ -4,16 +4,10 @@ from types import MethodType
import hydra
from hydra.utils import instantiate
from omegaconf import DictConfig, OmegaConf
from pytorch_lightning.callbacks import (
EarlyStopping,
LearningRateMonitor,
ModelCheckpoint,
)
from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint
from pytorch_lightning.loggers import MLFlowLogger
from torch.optim.lr_scheduler import ReduceLROnPlateau
# from torch_audiomentations import Compose, Shift
os.environ["HYDRA_FULL_ERROR"] = "1"
JOB_ID = os.environ.get("SLURM_JOBID", "0")
@ -31,13 +25,8 @@ def main(config: DictConfig):
)
parameters = config.hyperparameters
# apply_augmentations = Compose(
# [
# Shift(min_shift=0.5, max_shift=1.0, shift_unit="seconds", p=0.5),
# ]
# )
dataset = instantiate(config.dataset, augmentations=None)
dataset = instantiate(config.dataset)
model = instantiate(
config.model,
dataset=dataset,
@ -56,8 +45,6 @@ def main(config: DictConfig):
every_n_epochs=1,
)
callbacks.append(checkpoint)
callbacks.append(LearningRateMonitor(logging_interval="epoch"))
if parameters.get("Early_stop", False):
early_stopping = EarlyStopping(
monitor="val_loss",
@ -69,11 +56,11 @@ def main(config: DictConfig):
)
callbacks.append(early_stopping)
def configure_optimizers(self):
def configure_optimizer(self):
optimizer = instantiate(
config.optimizer,
lr=parameters.get("lr"),
params=self.parameters(),
parameters=self.parameters(),
)
scheduler = ReduceLROnPlateau(
optimizer=optimizer,
@ -83,13 +70,9 @@ def main(config: DictConfig):
min_lr=parameters.get("min_lr", 1e-6),
patience=parameters.get("ReduceLr_patience", 3),
)
return {
"optimizer": optimizer,
"lr_scheduler": scheduler,
"monitor": f'valid_{parameters.get("ReduceLr_monitor", "loss")}',
}
return {"optimizer": optimizer, "lr_scheduler": scheduler}
model.configure_optimizers = MethodType(configure_optimizers, model)
model.configure_parameters = MethodType(configure_optimizer, model)
trainer = instantiate(config.trainer, logger=logger, callbacks=callbacks)
trainer.fit(model)

View File

@ -3,5 +3,5 @@ defaults:
- dataset : Vctk
- optimizer : Adam
- hyperparameters : default
- trainer : default
- trainer : fastrun_dev
- mlflow : experiment

View File

@ -0,0 +1,11 @@
_target_: enhancer.data.dataset.EnhancerDataset
root_dir : /Users/shahules/Myprojects/enhancer/datasets/vctk_test
name : dns-2020
duration : 1.0
sampling_rate: 8000
batch_size: 32
files:
train_clean : clean_test_wav
test_clean : clean_test_wav
train_noisy : clean_test_wav
test_noisy : clean_test_wav

View File

@ -1,11 +1,11 @@
_target_: mayavoz.data.dataset.MayaDataset
_target_: enhancer.data.dataset.EnhancerDataset
name : vctk
root_dir : /scratch/c.sistc3/DS_10283_2791
duration : 2
stride : 1
duration : 1.5
sampling_rate: 16000
batch_size: 128
valid_minutes : 25
batch_size: 256
valid_size : 0.05
files:
train_clean : clean_trainset_28spk_wav
test_clean : clean_testset_wav

View File

@ -0,0 +1,13 @@
_target_: enhancer.data.dataset.EnhancerDataset
name : vctk
root_dir : /Users/shahules/Myprojects/enhancer/datasets/vctk
duration : 1.0
sampling_rate: 16000
batch_size: 64
num_workers : 0
files:
train_clean : clean_testset_wav
test_clean : clean_testset_wav
train_noisy : noisy_testset_wav
test_noisy : noisy_testset_wav

View File

@ -1,7 +1,7 @@
loss : si-snr
metric : [stoi,pesq]
loss : mse
metric : [stoi,pesq,si-sdr]
lr : 0.001
ReduceLr_patience : 10
ReduceLr_factor : 0.5
min_lr : 0.000001
min_lr : 0.00
EarlyStopping_factor : 10

View File

@ -0,0 +1,2 @@
experiment_name : shahules/enhancer
run_name : baseline

View File

@ -1,11 +1,11 @@
_target_: mayavoz.models.demucs.Demucs
_target_: enhancer.models.demucs.Demucs
num_channels: 1
resample: 4
resample: 2
sampling_rate : 16000
encoder_decoder:
depth: 4
initial_output_channels: 64
depth: 5
initial_output_channels: 32
kernel_size: 8
stride: 4
growth_factor: 2

View File

@ -1,5 +1,5 @@
_target_: mayavoz.models.waveunet.WaveUnet
_target_: enhancer.models.waveunet.WaveUnet
num_channels : 1
depth : 9
depth : 12
initial_output_channels: 24
sampling_rate : 16000

View File

@ -2,14 +2,14 @@ _target_: pytorch_lightning.Trainer
accelerator: gpu
accumulate_grad_batches: 1
amp_backend: native
auto_lr_find: True
auto_lr_find: False
auto_scale_batch_size: False
auto_select_gpus: True
benchmark: False
check_val_every_n_epoch: 1
detect_anomaly: False
deterministic: False
devices: 1
devices: 2
enable_checkpointing: True
enable_model_summary: True
enable_progress_bar: True
@ -22,9 +22,8 @@ limit_predict_batches: 1.0
limit_test_batches: 1.0
limit_train_batches: 1.0
limit_val_batches: 1.0
log_every_n_steps: 50
max_epochs: 200
max_steps: -1
log_every_n_steps: 100
max_epochs: 250
max_time: null
min_epochs: 1
min_steps: null

View File

@ -0,0 +1 @@
from enhancer.data.dataset import EnhancerDataset

263
enhancer/data/dataset.py Normal file
View File

@ -0,0 +1,263 @@
import math
import multiprocessing
import os
from typing import Optional
import pytorch_lightning as pl
import torch.nn.functional as F
from sklearn.model_selection import train_test_split
from torch.utils.data import DataLoader, Dataset, IterableDataset
from enhancer.data.fileprocessor import Fileprocessor
from enhancer.utils import check_files
from enhancer.utils.config import Files
from enhancer.utils.io import Audio
from enhancer.utils.random import create_unique_rng
class TrainDataset(IterableDataset):
def __init__(self, dataset):
self.dataset = dataset
def __iter__(self):
return self.dataset.train__iter__()
def __len__(self):
return self.dataset.train__len__()
class ValidDataset(Dataset):
def __init__(self, dataset):
self.dataset = dataset
def __getitem__(self, idx):
return self.dataset.val__getitem__(idx)
def __len__(self):
return self.dataset.val__len__()
class TestDataset(Dataset):
def __init__(self, dataset):
self.dataset = dataset
def __getitem__(self, idx):
return self.dataset.test__getitem__(idx)
def __len__(self):
return self.dataset.test__len__()
class TaskDataset(pl.LightningDataModule):
def __init__(
self,
name: str,
root_dir: str,
files: Files,
valid_size: float = 0.20,
duration: float = 1.0,
sampling_rate: int = 48000,
matching_function=None,
batch_size=32,
num_workers: Optional[int] = None,
):
super().__init__()
self.name = name
self.files, self.root_dir = check_files(root_dir, files)
self.duration = duration
self.sampling_rate = sampling_rate
self.batch_size = batch_size
self.matching_function = matching_function
self._validation = []
if num_workers is None:
num_workers = multiprocessing.cpu_count() // 2
self.num_workers = num_workers
if valid_size > 0.0:
self.valid_size = valid_size
else:
raise ValueError("valid_size must be greater than 0")
def setup(self, stage: Optional[str] = None):
"""
prepare train/validation/test data splits
"""
if stage in ("fit", None):
train_clean = os.path.join(self.root_dir, self.files.train_clean)
train_noisy = os.path.join(self.root_dir, self.files.train_noisy)
fp = Fileprocessor.from_name(
self.name, train_clean, train_noisy, self.matching_function
)
train_data = fp.prepare_matching_dict()
self.train_data, self.val_data = train_test_split(
train_data, test_size=0.20, shuffle=True, random_state=42
)
self._validation = self.prepare_mapstype(self.val_data)
test_clean = os.path.join(self.root_dir, self.files.test_clean)
test_noisy = os.path.join(self.root_dir, self.files.test_noisy)
fp = Fileprocessor.from_name(
self.name, test_clean, test_noisy, self.matching_function
)
test_data = fp.prepare_matching_dict()
self._test = self.prepare_mapstype(test_data)
def prepare_mapstype(self, data):
metadata = []
for item in data:
clean, noisy, total_dur = item.values()
if total_dur < self.duration:
continue
num_segments = round(total_dur / self.duration)
for index in range(num_segments):
start_time = index * self.duration
metadata.append(({"clean": clean, "noisy": noisy}, start_time))
return metadata
def train_dataloader(self):
return DataLoader(
TrainDataset(self),
batch_size=self.batch_size,
num_workers=self.num_workers,
)
def val_dataloader(self):
return DataLoader(
ValidDataset(self),
batch_size=self.batch_size,
num_workers=self.num_workers,
)
def test_dataloader(self):
return DataLoader(
TestDataset(self),
batch_size=self.batch_size,
num_workers=self.num_workers,
)
class EnhancerDataset(TaskDataset):
"""
Dataset object for creating clean-noisy speech enhancement datasets
paramters:
name : str
name of the dataset
root_dir : str
root directory of the dataset containing clean/noisy folders
files : Files
dataclass containing train_clean, train_noisy, test_clean, test_noisy
folder names (refer enhancer.utils.Files dataclass)
duration : float
expected audio duration of single audio sample for training
sampling_rate : int
desired sampling rate
batch_size : int
batch size of each batch
num_workers : int
num workers to be used while training
matching_function : str
maching functions - (one_to_one,one_to_many). Default set to None.
use one_to_one mapping for datasets with one noisy file for each clean file
use one_to_many mapping for multiple noisy files for each clean file
"""
def __init__(
self,
name: str,
root_dir: str,
files: Files,
valid_size=0.2,
duration=1.0,
sampling_rate=48000,
matching_function=None,
batch_size=32,
num_workers: Optional[int] = None,
):
super().__init__(
name=name,
root_dir=root_dir,
files=files,
valid_size=valid_size,
sampling_rate=sampling_rate,
duration=duration,
matching_function=matching_function,
batch_size=batch_size,
num_workers=num_workers,
)
self.sampling_rate = sampling_rate
self.files = files
self.duration = max(1.0, duration)
self.audio = Audio(self.sampling_rate, mono=True, return_tensor=True)
def setup(self, stage: Optional[str] = None):
super().setup(stage=stage)
def train__iter__(self):
rng = create_unique_rng(self.model.current_epoch)
while True:
file_dict, *_ = rng.choices(
self.train_data,
k=1,
weights=[file["duration"] for file in self.train_data],
)
file_duration = file_dict["duration"]
start_time = round(rng.uniform(0, file_duration - self.duration), 2)
data = self.prepare_segment(file_dict, start_time)
yield data
def val__getitem__(self, idx):
return self.prepare_segment(*self._validation[idx])
def test__getitem__(self, idx):
return self.prepare_segment(*self._test[idx])
def prepare_segment(self, file_dict: dict, start_time: float):
clean_segment = self.audio(
file_dict["clean"], offset=start_time, duration=self.duration
)
noisy_segment = self.audio(
file_dict["noisy"], offset=start_time, duration=self.duration
)
clean_segment = F.pad(
clean_segment,
(
0,
int(
self.duration * self.sampling_rate - clean_segment.shape[-1]
),
),
)
noisy_segment = F.pad(
noisy_segment,
(
0,
int(
self.duration * self.sampling_rate - noisy_segment.shape[-1]
),
),
)
return {"clean": clean_segment, "noisy": noisy_segment}
def train__len__(self):
return math.ceil(
sum([file["duration"] for file in self.train_data]) / self.duration
)
def val__len__(self):
return len(self._validation)
def test__len__(self):
return len(self._test)

View File

@ -62,24 +62,25 @@ class ProcessorFunctions:
]
for clean_file in clean_filenames:
noisy_filenames = glob.glob(
os.path.join(noisy_path, f"*_{clean_file}")
os.path.join(noisy_path, f"*_{clean_file}.wav")
)
for noisy_file in noisy_filenames:
sr_clean, clean_wav = wavfile.read(
sr_clean, clean_file = wavfile.read(
os.path.join(clean_path, clean_file)
)
sr_noisy, noisy_wav = wavfile.read(noisy_file)
if (clean_wav.shape[-1] == noisy_wav.shape[-1]) and (
sr_noisy, noisy_file = wavfile.read(noisy_file)
if (clean_file.shape[-1] == noisy_file.shape[-1]) and (
sr_clean == sr_noisy
):
matching_wavfiles.append(
{
"clean": os.path.join(clean_path, clean_file),
"noisy": noisy_file,
"duration": clean_wav.shape[-1] / sr_clean,
"duration": clean_file.shape[-1] / sr_clean,
}
)
return matching_wavfiles
@ -93,9 +94,9 @@ class Fileprocessor:
def from_name(cls, name: str, clean_dir, noisy_dir, matching_function=None):
if matching_function is None:
if name.lower() in ("vctk", "valentini"):
if name.lower() == "vctk":
return cls(clean_dir, noisy_dir, ProcessorFunctions.one_to_one)
elif name.lower() == "ms-snsd":
elif name.lower() == "dns-2020":
return cls(clean_dir, noisy_dir, ProcessorFunctions.one_to_many)
else:
raise ValueError(

View File

@ -8,7 +8,7 @@ from librosa import load as load_audio
from scipy.io import wavfile
from scipy.signal import get_window
from mayavoz.utils import Audio
from enhancer.utils import Audio
class Inference:
@ -95,7 +95,6 @@ class Inference:
):
"""
stitch batched waveform into single waveform. (Overlap-add)
inspired from https://github.com/asteroid-team/asteroid
arguments:
data: batched waveform
window_size : window_size used to batch waveform

View File

@ -1,9 +1,8 @@
import warnings
import logging
import numpy as np
import torch
import torch.nn as nn
from torchmetrics import ScaleInvariantSignalNoiseRatio
from torchmetrics.audio.pesq import PerceptualEvaluationSpeechQuality
from torchmetrics.audio.stoi import ShortTimeObjectiveIntelligibility
@ -66,8 +65,8 @@ class Si_SDR:
raise TypeError(
"Invalid reduction, valid options are sum, mean, None"
)
self.higher_better = True
self.name = "si-sdr"
self.higher_better = False
self.name = "Si-SDR"
def __call__(self, prediction: torch.Tensor, target: torch.Tensor):
@ -123,18 +122,18 @@ class Pesq:
self.sr = sr
self.name = "pesq"
self.mode = mode
self.pesq = PerceptualEvaluationSpeechQuality(
fs=self.sr, mode=self.mode
)
self.pesq = PerceptualEvaluationSpeechQuality(fs=sr, mode=mode)
def __call__(self, prediction: torch.Tensor, target: torch.Tensor):
pesq_values = []
for pred, target_ in zip(prediction, target):
try:
pesq_values.append(self.pesq(pred.squeeze(), target_.squeeze()))
pesq_values.append(
self.pesq(pred.squeeze(), target_.squeeze()).item()
)
except Exception as e:
warnings.warn(f"{e} error occured while calculating PESQ")
logging.warning(f"{e} error occured while calculating PESQ")
return torch.tensor(np.mean(pesq_values))
@ -183,34 +182,10 @@ class LossWrapper(nn.Module):
return loss
class Si_snr(nn.Module):
"""
SI-SNR
"""
def __init__(self, **kwargs):
super().__init__()
self.loss_fun = ScaleInvariantSignalNoiseRatio(**kwargs)
self.higher_better = False
self.name = "si_snr"
def forward(self, prediction: torch.Tensor, target: torch.Tensor):
if prediction.size() != target.size() or target.ndim < 3:
raise TypeError(
f"""Inputs must be of the same shape (batch_size,channels,samples)
got {prediction.size()} and {target.size()} instead"""
)
return -1 * self.loss_fun(prediction, target)
LOSS_MAP = {
"mae": mean_absolute_error,
"mse": mean_squared_error,
"si-sdr": Si_SDR,
"pesq": Pesq,
"stoi": Stoi,
"si-snr": Si_snr,
}

View File

@ -0,0 +1,3 @@
from enhancer.models.demucs import Demucs
from enhancer.models.model import Model
from enhancer.models.waveunet import WaveUnet

View File

@ -1,14 +1,14 @@
import logging
import math
import warnings
from typing import List, Optional, Union
import torch.nn.functional as F
from torch import nn
from mayavoz.data.dataset import MayaDataset
from mayavoz.models.model import Mayamodel
from mayavoz.utils.io import Audio as audio
from mayavoz.utils.utils import merge_dict
from enhancer.data.dataset import EnhancerDataset
from enhancer.models.model import Model
from enhancer.utils.io import Audio as audio
from enhancer.utils.utils import merge_dict
class DemucsLSTM(nn.Module):
@ -88,7 +88,7 @@ class DemucsDecoder(nn.Module):
return out
class Demucs(Mayamodel):
class Demucs(Model):
"""
Demucs model from https://arxiv.org/pdf/1911.13254.pdf
parameters:
@ -102,8 +102,8 @@ class Demucs(Mayamodel):
sampling rate of input audio
lr : float, defaults to 1e-3
learning rate used for training
dataset: MayaDataset, optional
MayaDataset object containing train/validation data for training
dataset: EnhancerDataset, optional
EnhancerDataset object containing train/validation data for training
duration : float, optional
chunk duration in seconds
loss : string or List of strings
@ -133,20 +133,17 @@ class Demucs(Mayamodel):
num_channels: int = 1,
resample: int = 4,
sampling_rate=16000,
normalize=True,
lr: float = 1e-3,
dataset: Optional[MayaDataset] = None,
duration: Optional[float] = None,
dataset: Optional[EnhancerDataset] = None,
loss: Union[str, List] = "mse",
metric: Union[str, List] = "mse",
floor=1e-3,
):
duration = (
dataset.duration if isinstance(dataset, MayaDataset) else duration
dataset.duration if isinstance(dataset, EnhancerDataset) else None
)
if dataset is not None:
if sampling_rate != dataset.sampling_rate:
warnings.warn(
logging.warning(
f"model sampling rate {sampling_rate} should match dataset sampling rate {dataset.sampling_rate}"
)
sampling_rate = dataset.sampling_rate
@ -164,8 +161,6 @@ class Demucs(Mayamodel):
lstm = merge_dict(self.LSTM_DEFAULTS, lstm)
self.save_hyperparameters("encoder_decoder", "lstm", "resample")
hidden = encoder_decoder["initial_output_channels"]
self.normalize = normalize
self.floor = floor
self.encoder = nn.ModuleList()
self.decoder = nn.ModuleList()
@ -205,16 +200,11 @@ class Demucs(Mayamodel):
if waveform.dim() == 2:
waveform = waveform.unsqueeze(1)
if waveform.size(1) != self.hparams.num_channels:
raise ValueError(
f"Number of input channels initialized is {self.hparams.num_channels} but got {waveform.size(1)} channels"
if waveform.size(1) != 1:
raise TypeError(
f"Demucs can only process mono channel audio, input has {waveform.size(1)} channels"
)
if self.normalize:
waveform = waveform.mean(dim=1, keepdim=True)
std = waveform.std(dim=-1, keepdim=True)
waveform = waveform / (self.floor + std)
else:
std = 1
length = waveform.shape[-1]
x = F.pad(waveform, (0, self.get_padding_length(length) - length))
if self.hparams.resample > 1:
@ -247,7 +237,7 @@ class Demucs(Mayamodel):
)
out = x[..., :length]
return std * out
return out
def get_padding_length(self, input_length):

View File

@ -2,7 +2,7 @@ import os
from collections import defaultdict
from importlib import import_module
from pathlib import Path
from typing import Any, List, Optional, Text, Union
from typing import List, Optional, Text, Union
from urllib.parse import urlparse
import numpy as np
@ -10,24 +10,19 @@ import pytorch_lightning as pl
import torch
from huggingface_hub import cached_download, hf_hub_url
from pytorch_lightning.utilities.cloud_io import load as pl_load
from torch import nn
from torch.optim import Adam
from mayavoz.data.dataset import MayaDataset
from mayavoz.inference import Inference
from mayavoz.loss import LOSS_MAP, LossWrapper
from mayavoz.version import __version__
from enhancer.data.dataset import EnhancerDataset
from enhancer.inference import Inference
from enhancer.loss import LOSS_MAP, LossWrapper
from enhancer.version import __version__
CACHE_DIR = os.getenv(
"ENHANCER_CACHE",
os.path.expanduser("~/.cache/torch/mayavoz"),
)
HF_TORCH_WEIGHTS = "pytorch_model.ckpt"
CACHE_DIR = ""
HF_TORCH_WEIGHTS = ""
DEFAULT_DEVICE = "cpu"
SAVE_NAME = "mayavoz"
class Mayamodel(pl.LightningModule):
class Model(pl.LightningModule):
"""
Base class for all models
parameters:
@ -37,11 +32,11 @@ class Mayamodel(pl.LightningModule):
audio sampling rate
lr: float, optional
learning rate for model training
dataset: MayaDataset, optional
mayavoz dataset used for training/validation
dataset: EnhancerDataset, optional
Enhancer dataset used for training/validation
duration: float, optional
duration used for training/inference
loss : string or List of strings or custom loss (nn.Module), default to "mse"
loss : string or List of strings, default to "mse"
loss functions to be used. Available ("mse","mae","Si-SDR")
"""
@ -51,13 +46,15 @@ class Mayamodel(pl.LightningModule):
num_channels: int = 1,
sampling_rate: int = 16000,
lr: float = 1e-3,
dataset: Optional[MayaDataset] = None,
dataset: Optional[EnhancerDataset] = None,
duration: Optional[float] = None,
loss: Union[str, List] = "mse",
metric: Union[str, List, Any] = "mse",
metric: Union[str, List] = "mse",
):
super().__init__()
assert num_channels == 1, "mayavoz only support for mono channel models"
assert (
num_channels == 1
), "Enhancer only support for mono channel models"
self.dataset = dataset
self.save_hyperparameters(
"num_channels", "sampling_rate", "lr", "loss", "metric", "duration"
@ -89,25 +86,20 @@ class Mayamodel(pl.LightningModule):
@metric.setter
def metric(self, metric):
self._metric = []
if isinstance(metric, (str, nn.Module)):
if isinstance(metric, str):
metric = [metric]
for func in metric:
if isinstance(func, str):
if func in LOSS_MAP.keys():
if func in ("pesq", "stoi"):
self._metric.append(
LOSS_MAP[func](self.hparams.sampling_rate)
)
else:
self._metric.append(LOSS_MAP[func]())
if func in LOSS_MAP.keys():
if func in ("pesq", "stoi"):
self._metric.append(
LOSS_MAP[func](self.hparams.sampling_rate)
)
else:
ValueError(f"Invalid metrics {func}")
self._metric.append(LOSS_MAP[func]())
elif isinstance(func, nn.Module):
self._metric.append(func)
else:
raise ValueError("Invalid metrics")
raise ValueError(f"Invalid metrics {func}")
@property
def dataset(self):
@ -121,29 +113,22 @@ class Mayamodel(pl.LightningModule):
if stage == "fit":
torch.cuda.empty_cache()
self.dataset.setup(stage)
self.dataset.model = self
print(
"Total train duration",
self.dataset.train_dataloader().dataset.__len__()
* self.dataset.duration
/ 60,
self.dataset.train_dataloader().dataset.__len__() / 60,
"minutes",
)
print(
"Total validation duration",
self.dataset.val_dataloader().dataset.__len__()
* self.dataset.duration
/ 60,
self.dataset.val_dataloader().dataset.__len__() / 60,
"minutes",
)
print(
"Total test duration",
self.dataset.test_dataloader().dataset.__len__()
* self.dataset.duration
/ 60,
self.dataset.test_dataloader().dataset.__len__() / 60,
"minutes",
)
self.dataset.model = self
def train_dataloader(self):
return self.dataset.train_dataloader()
@ -234,8 +219,8 @@ class Mayamodel(pl.LightningModule):
def on_save_checkpoint(self, checkpoint):
checkpoint[SAVE_NAME] = {
"version": {SAVE_NAME: __version__, "pytorch": torch.__version__},
checkpoint["enhancer"] = {
"version": {"enhancer": __version__, "pytorch": torch.__version__},
"architecture": {
"module": self.__class__.__module__,
"class": self.__class__.__name__,
@ -288,8 +273,8 @@ class Mayamodel(pl.LightningModule):
Returns
-------
model : Mayamodel
Mayamodel
model : Model
Model
See also
--------
@ -318,7 +303,7 @@ class Mayamodel(pl.LightningModule):
)
model_path_pl = cached_download(
url=url,
library_name="mayavoz",
library_name="enhancer",
library_version=__version__,
cache_dir=cached_dir,
use_auth_token=use_auth_token,
@ -328,8 +313,8 @@ class Mayamodel(pl.LightningModule):
map_location = torch.device(DEFAULT_DEVICE)
loaded_checkpoint = pl_load(model_path_pl, map_location)
module_name = loaded_checkpoint[SAVE_NAME]["architecture"]["module"]
class_name = loaded_checkpoint[SAVE_NAME]["architecture"]["class"]
module_name = loaded_checkpoint["enhancer"]["architecture"]["module"]
class_name = loaded_checkpoint["enhancer"]["architecture"]["class"]
module = import_module(module_name)
Klass = getattr(module, class_name)

View File

@ -1,12 +1,12 @@
import warnings
import logging
from typing import List, Optional, Union
import torch
import torch.nn as nn
import torch.nn.functional as F
from mayavoz.data.dataset import MayaDataset
from mayavoz.models.model import Mayamodel
from enhancer.data.dataset import EnhancerDataset
from enhancer.models.model import Model
class WavenetDecoder(nn.Module):
@ -66,7 +66,7 @@ class WavenetEncoder(nn.Module):
return self.encoder(waveform)
class WaveUnet(Mayamodel):
class WaveUnet(Model):
"""
Wave-U-Net model from https://arxiv.org/pdf/1811.11307.pdf
parameters:
@ -80,8 +80,8 @@ class WaveUnet(Mayamodel):
sampling rate of input audio
lr : float, defaults to 1e-3
learning rate used for training
dataset: MayaDataset, optional
MayaDataset object containing train/validation data for training
dataset: EnhancerDataset, optional
EnhancerDataset object containing train/validation data for training
duration : float, optional
chunk duration in seconds
loss : string or List of strings
@ -97,17 +97,17 @@ class WaveUnet(Mayamodel):
initial_output_channels: int = 24,
sampling_rate: int = 16000,
lr: float = 1e-3,
dataset: Optional[MayaDataset] = None,
dataset: Optional[EnhancerDataset] = None,
duration: Optional[float] = None,
loss: Union[str, List] = "mse",
metric: Union[str, List] = "mse",
):
duration = (
dataset.duration if isinstance(dataset, MayaDataset) else duration
dataset.duration if isinstance(dataset, EnhancerDataset) else None
)
if dataset is not None:
if sampling_rate != dataset.sampling_rate:
warnings.warn(
logging.warning(
f"model sampling rate {sampling_rate} should match dataset sampling rate {dataset.sampling_rate}"
)
sampling_rate = dataset.sampling_rate

View File

@ -0,0 +1,3 @@
from enhancer.utils.config import Files
from enhancer.utils.io import Audio
from enhancer.utils.utils import check_files

View File

@ -70,7 +70,7 @@ class Audio:
if sampling_rate:
audio = self.__class__.resample_audio(
audio, sampling_rate, self.sampling_rate
audio, self.sampling_rate, sampling_rate
)
if self.return_tensor:
return torch.tensor(audio)

View File

@ -1,7 +1,7 @@
import os
from typing import Optional
from mayavoz.utils.config import Files
from enhancer.utils.config import Files
def check_files(root_dir: str, files: Files):

View File

@ -1,4 +1,4 @@
name: mayavoz
name: enhancer
dependencies:
- pip=21.0.1

52
hpc_entrypoint.sh Normal file
View File

@ -0,0 +1,52 @@
#!/bin/bash
set -e
echo '----------------------------------------------------'
echo ' SLURM_CLUSTER_NAME = '$SLURM_CLUSTER_NAME
echo ' SLURMD_NODENAME = '$SLURMD_NODENAME
echo ' SLURM_JOBID = '$SLURM_JOBID
echo ' SLURM_JOB_USER = '$SLURM_JOB_USER
echo ' SLURM_PARTITION = '$SLURM_JOB_PARTITION
echo ' SLURM_JOB_ACCOUNT = '$SLURM_JOB_ACCOUNT
echo '----------------------------------------------------'
#TeamCity Output
cat << EOF
##teamcity[buildNumber '$SLURM_JOBID']
EOF
echo "Load HPC modules"
module load anaconda
echo "Activate Environment"
source activate enhancer
export TRANSFORMERS_OFFLINE=True
export PYTHONPATH=${PYTHONPATH}:/scratch/c.sistc3/enhancer
export HYDRA_FULL_ERROR=1
echo $PYTHONPATH
source ~/mlflow_settings.sh
echo "Making temp dir"
mkdir temp
pwd
# echo "files"
# rm -rf /scratch/c.sistc3/MS-SNSD/DNS30/CleanSpeech_training
# rm -rf /scratch/c.sistc3/MS-SNSD/DNS30/NoisySpeech_training
# rm -rf /scratch/c.sistc3/MS-SNSD/DNS30/NoisySpeech_testing
# rm -rf /scratch/c.sistc3/MS-SNSD/DNS30/CleanSpeech_testing
# cp -r /scratch/c.sistc3/MS-SNSD/DNS30/NoisySpeech_testing /scratch/c.sistc3/MS-SNSD/DNS15/
# cp -r /scratch/c.sistc3/MS-SNSD/DNS30/CleanSpeech_testing /scratch/c.sistc3/MS-SNSD/DNS15/
# rm -rf /scratch/c.sistc3/MS-SNSD/DNS20
# mkdir /scratch/c.sistc3/MS-SNSD/DNS20
python noisyspeech_synthesizer.py
mv ./CleanSpeech_testing/ /scratch/c.sistc3/MS-SNSD/DNS20
mv ./NoisySpeech_testing/ /scratch/c.sistc3/MS-SNSD/DNS20
ls /scratch/c.sistc3/MS-SNSD/DNS20
#python enhancer/cli/train.py

View File

@ -1,120 +0,0 @@
import os
from types import MethodType
import hydra
from hydra.utils import instantiate
from omegaconf import DictConfig, OmegaConf
from pytorch_lightning.callbacks import (
EarlyStopping,
LearningRateMonitor,
ModelCheckpoint,
)
from pytorch_lightning.loggers import MLFlowLogger
from torch.optim.lr_scheduler import ReduceLROnPlateau
# from torch_audiomentations import Compose, Shift
os.environ["HYDRA_FULL_ERROR"] = "1"
JOB_ID = os.environ.get("SLURM_JOBID", "0")
@hydra.main(config_path="train_config", config_name="config")
def train(config: DictConfig):
OmegaConf.save(config, "config.yaml")
callbacks = []
logger = MLFlowLogger(
experiment_name=config.mlflow.experiment_name,
run_name=config.mlflow.run_name,
tags={"JOB_ID": JOB_ID},
)
parameters = config.hyperparameters
# apply_augmentations = Compose(
# [
# Shift(min_shift=0.5, max_shift=1.0, shift_unit="seconds", p=0.5),
# ]
# )
dataset = instantiate(config.dataset, augmentations=None)
model = instantiate(
config.model,
dataset=dataset,
lr=parameters.get("lr"),
loss=parameters.get("loss"),
metric=parameters.get("metric"),
)
direction = model.valid_monitor
checkpoint = ModelCheckpoint(
dirpath="./model",
filename=f"model_{JOB_ID}",
monitor="valid_loss",
verbose=False,
mode=direction,
every_n_epochs=1,
)
callbacks.append(checkpoint)
callbacks.append(LearningRateMonitor(logging_interval="epoch"))
if parameters.get("Early_stop", False):
early_stopping = EarlyStopping(
monitor="val_loss",
mode=direction,
min_delta=0.0,
patience=parameters.get("EarlyStopping_patience", 10),
strict=True,
verbose=False,
)
callbacks.append(early_stopping)
def configure_optimizers(self):
optimizer = instantiate(
config.optimizer,
lr=parameters.get("lr"),
params=self.parameters(),
)
scheduler = ReduceLROnPlateau(
optimizer=optimizer,
mode=direction,
factor=parameters.get("ReduceLr_factor", 0.1),
verbose=True,
min_lr=parameters.get("min_lr", 1e-6),
patience=parameters.get("ReduceLr_patience", 3),
)
return {
"optimizer": optimizer,
"lr_scheduler": scheduler,
"monitor": f'valid_{parameters.get("ReduceLr_monitor", "loss")}',
}
model.configure_optimizers = MethodType(configure_optimizers, model)
trainer = instantiate(config.trainer, logger=logger, callbacks=callbacks)
trainer.fit(model)
trainer.test(model)
logger.experiment.log_artifact(
logger.run_id, f"{trainer.default_root_dir}/config.yaml"
)
saved_location = os.path.join(
trainer.default_root_dir, "model", f"model_{JOB_ID}.ckpt"
)
if os.path.isfile(saved_location):
logger.experiment.log_artifact(logger.run_id, saved_location)
logger.experiment.log_param(
logger.run_id,
"num_train_steps_per_epoch",
dataset.train__len__() / dataset.batch_size,
)
logger.experiment.log_param(
logger.run_id,
"num_valid_steps_per_epoch",
dataset.val__len__() / dataset.batch_size,
)
if __name__ == "__main__":
train()

View File

@ -1,12 +0,0 @@
_target_: mayavoz.data.dataset.MayaDataset
name : MS-SDSD
root_dir : /Users/shahules/Myprojects/MS-SNSD
duration : 2.0
sampling_rate: 16000
batch_size: 32
min_valid_minutes: 15
files:
train_clean : CleanSpeech_training
test_clean : CleanSpeech_training
train_noisy : NoisySpeech_training
test_noisy : NoisySpeech_training

View File

@ -1,13 +0,0 @@
_target_: mayavoz.data.dataset.MayaDataset
name : Valentini
root_dir : /scratch/c.sistc3/DS_10283_2791
duration : 4.5
stride : 2
sampling_rate: 16000
batch_size: 32
valid_minutes : 15
files:
train_clean : clean_trainset_28spk_wav
test_clean : clean_testset_wav
train_noisy : noisy_trainset_28spk_wav
test_noisy : noisy_testset_wav

View File

@ -1,7 +0,0 @@
loss : mae
metric : [stoi,pesq,si-sdr]
lr : 0.0003
ReduceLr_patience : 5
ReduceLr_factor : 0.2
min_lr : 0.000001
EarlyStopping_factor : 10

View File

@ -1,2 +0,0 @@
experiment_name : shahules/mayavoz
run_name : Demucs + Vtck with stride + augmentations

View File

@ -1,25 +0,0 @@
_target_: mayavoz.models.dccrn.DCCRN
num_channels: 1
sampling_rate : 16000
complex_lstm : True
complex_norm : True
complex_relu : True
masking_mode : True
encoder_decoder:
initial_output_channels : 32
depth : 6
kernel_size : 5
growth_factor : 2
stride : 2
padding : 2
output_padding : 1
lstm:
num_layers : 2
hidden_size : 256
stft:
window_len : 400
hop_size : 100
nfft : 512

View File

@ -1,46 +0,0 @@
_target_: pytorch_lightning.Trainer
accelerator: gpu
accumulate_grad_batches: 1
amp_backend: native
auto_lr_find: True
auto_scale_batch_size: False
auto_select_gpus: True
benchmark: False
check_val_every_n_epoch: 1
detect_anomaly: False
deterministic: False
devices: 2
enable_checkpointing: True
enable_model_summary: True
enable_progress_bar: True
fast_dev_run: False
gpus: null
gradient_clip_val: 0
gradient_clip_algorithm: norm
ipus: null
limit_predict_batches: 1.0
limit_test_batches: 1.0
limit_train_batches: 1.0
limit_val_batches: 1.0
log_every_n_steps: 50
max_epochs: 200
max_steps: -1
max_time: null
min_epochs: 1
min_steps: null
move_metrics_to_cpu: False
multiple_trainloader_mode: max_size_cycle
num_nodes: 1
num_processes: 1
num_sanity_val_steps: 2
overfit_batches: 0.0
precision: 32
profiler: null
reload_dataloaders_every_n_epochs: 0
replace_sampler_ddp: True
strategy: ddp
sync_batchnorm: False
tpu_cores: null
track_grad_norm: -1
val_check_interval: 1.0
weights_save_path: null

View File

@ -1 +0,0 @@
from mayavoz.data.dataset import MayaDataset

View File

@ -1,393 +0,0 @@
import math
import multiprocessing
import os
import sys
import warnings
from pathlib import Path
from typing import Optional
import numpy as np
import pytorch_lightning as pl
import torch
import torch.nn.functional as F
from torch.utils.data import DataLoader, Dataset, RandomSampler
from torch_audiomentations import Compose
from mayavoz.data.fileprocessor import Fileprocessor
from mayavoz.utils import check_files
from mayavoz.utils.config import Files
from mayavoz.utils.io import Audio
from mayavoz.utils.random import create_unique_rng
LARGE_NUM = 2147483647
class TrainDataset(Dataset):
def __init__(self, dataset):
self.dataset = dataset
def __getitem__(self, idx):
return self.dataset.train__getitem__(idx)
def __len__(self):
return self.dataset.train__len__()
class ValidDataset(Dataset):
def __init__(self, dataset):
self.dataset = dataset
def __getitem__(self, idx):
return self.dataset.val__getitem__(idx)
def __len__(self):
return self.dataset.val__len__()
class TestDataset(Dataset):
def __init__(self, dataset):
self.dataset = dataset
def __getitem__(self, idx):
return self.dataset.test__getitem__(idx)
def __len__(self):
return self.dataset.test__len__()
class TaskDataset(pl.LightningDataModule):
def __init__(
self,
name: str,
root_dir: str,
files: Files,
min_valid_minutes: float = 0.20,
duration: float = 1.0,
stride=None,
sampling_rate: int = 48000,
matching_function=None,
batch_size=32,
num_workers: Optional[int] = None,
augmentations: Optional[Compose] = None,
):
super().__init__()
self.name = name
self.files, self.root_dir = check_files(root_dir, files)
self.duration = duration
self.stride = stride or duration
self.sampling_rate = sampling_rate
self.batch_size = batch_size
self.matching_function = matching_function
self._validation = []
if num_workers is None:
num_workers = multiprocessing.cpu_count() // 2
if num_workers is None:
num_workers = multiprocessing.cpu_count() // 2
if (
num_workers > 0
and sys.platform == "darwin"
and sys.version_info[0] >= 3
and sys.version_info[1] >= 8
):
warnings.warn(
"num_workers > 0 is not supported with macOS and Python 3.8+: "
"setting num_workers = 0."
)
num_workers = 0
self.num_workers = num_workers
if min_valid_minutes > 0.0:
self.min_valid_minutes = min_valid_minutes
else:
raise ValueError("min_valid_minutes must be greater than 0")
self.augmentations = augmentations
def setup(self, stage: Optional[str] = None):
"""
prepare train/validation/test data splits
"""
if stage in ("fit", None):
train_clean = os.path.join(self.root_dir, self.files.train_clean)
train_noisy = os.path.join(self.root_dir, self.files.train_noisy)
fp = Fileprocessor.from_name(
self.name, train_clean, train_noisy, self.matching_function
)
train_data = fp.prepare_matching_dict()
train_data, self.val_data = self.train_valid_split(
train_data,
min_valid_minutes=self.min_valid_minutes,
random_state=42,
)
self.train_data = self.prepare_traindata(train_data)
self._validation = self.prepare_mapstype(self.val_data)
test_clean = os.path.join(self.root_dir, self.files.test_clean)
test_noisy = os.path.join(self.root_dir, self.files.test_noisy)
fp = Fileprocessor.from_name(
self.name, test_clean, test_noisy, self.matching_function
)
test_data = fp.prepare_matching_dict()
self._test = self.prepare_mapstype(test_data)
def train_valid_split(
self, data, min_valid_minutes: float = 20, random_state: int = 42
):
min_valid_minutes *= 60
valid_sec_now = 0.0
valid_indices = []
all_speakers = np.unique(
[Path(file["clean"]).name.split("_")[0] for file in data]
)
possible_indices = list(range(0, len(all_speakers)))
rng = create_unique_rng(len(all_speakers))
while valid_sec_now <= min_valid_minutes:
speaker_index = rng.choice(possible_indices)
possible_indices.remove(speaker_index)
speaker_name = all_speakers[speaker_index]
print(f"Selected f{speaker_name} for valid")
file_indices = [
i
for i, file in enumerate(data)
if speaker_name == Path(file["clean"]).name.split("_")[0]
]
for i in file_indices:
valid_indices.append(i)
valid_sec_now += data[i]["duration"]
train_data = [
item for i, item in enumerate(data) if i not in valid_indices
]
valid_data = [item for i, item in enumerate(data) if i in valid_indices]
return train_data, valid_data
def prepare_traindata(self, data):
train_data = []
for item in data:
clean, noisy, total_dur = item.values()
num_segments = self.get_num_segments(
total_dur, self.duration, self.stride
)
samples_metadata = ({"clean": clean, "noisy": noisy}, num_segments)
train_data.append(samples_metadata)
return train_data
@staticmethod
def get_num_segments(file_duration, duration, stride):
if file_duration < duration:
num_segments = 1
else:
num_segments = math.ceil((file_duration - duration) / stride) + 1
return num_segments
def prepare_mapstype(self, data):
metadata = []
for item in data:
clean, noisy, total_dur = item.values()
if total_dur < self.duration:
metadata.append(({"clean": clean, "noisy": noisy}, 0.0))
else:
num_segments = self.get_num_segments(
total_dur, self.duration, self.duration
)
for index in range(num_segments):
start_time = index * self.duration
metadata.append(
({"clean": clean, "noisy": noisy}, start_time)
)
return metadata
def train_collatefn(self, batch):
output = {"clean": [], "noisy": []}
for item in batch:
output["clean"].append(item["clean"])
output["noisy"].append(item["noisy"])
output["clean"] = torch.stack(output["clean"], dim=0)
output["noisy"] = torch.stack(output["noisy"], dim=0)
if self.augmentations is not None:
noise = output["noisy"] - output["clean"]
output["clean"] = self.augmentations(
output["clean"], sample_rate=self.sampling_rate
)
self.augmentations.freeze_parameters()
output["noisy"] = (
self.augmentations(noise, sample_rate=self.sampling_rate)
+ output["clean"]
)
return output
@property
def generator(self):
generator = torch.Generator()
if hasattr(self, "model"):
seed = self.model.current_epoch + LARGE_NUM
else:
seed = LARGE_NUM
return generator.manual_seed(seed)
def train_dataloader(self):
dataset = TrainDataset(self)
sampler = RandomSampler(dataset, generator=self.generator)
return DataLoader(
dataset,
batch_size=self.batch_size,
num_workers=self.num_workers,
sampler=sampler,
collate_fn=self.train_collatefn,
)
def val_dataloader(self):
return DataLoader(
ValidDataset(self),
batch_size=self.batch_size,
num_workers=self.num_workers,
)
def test_dataloader(self):
return DataLoader(
TestDataset(self),
batch_size=self.batch_size,
num_workers=self.num_workers,
)
class MayaDataset(TaskDataset):
"""
Dataset object for creating clean-noisy speech enhancement datasets
paramters:
name : str
name of the dataset
root_dir : str
root directory of the dataset containing clean/noisy folders
files : Files
dataclass containing train_clean, train_noisy, test_clean, test_noisy
folder names (refer mayavoz.utils.Files dataclass)
min_valid_minutes: float
minimum validation split size time in minutes
algorithm randomly select n speakers (>=min_valid_minutes) from train data to form validation data.
duration : float
expected audio duration of single audio sample for training
sampling_rate : int
desired sampling rate
batch_size : int
batch size of each batch
num_workers : int
num workers to be used while training
matching_function : str
maching functions - (one_to_one,one_to_many). Default set to None.
use one_to_one mapping for datasets with one noisy file for each clean file
use one_to_many mapping for multiple noisy files for each clean file
"""
def __init__(
self,
name: str,
root_dir: str,
files: Files,
min_valid_minutes=5.0,
duration=1.0,
stride=None,
sampling_rate=48000,
matching_function=None,
batch_size=32,
num_workers: Optional[int] = None,
augmentations: Optional[Compose] = None,
):
super().__init__(
name=name,
root_dir=root_dir,
files=files,
min_valid_minutes=min_valid_minutes,
sampling_rate=sampling_rate,
duration=duration,
matching_function=matching_function,
batch_size=batch_size,
num_workers=num_workers,
augmentations=augmentations,
)
self.sampling_rate = sampling_rate
self.files = files
self.duration = max(1.0, duration)
self.audio = Audio(self.sampling_rate, mono=True, return_tensor=True)
self.stride = stride or duration
def setup(self, stage: Optional[str] = None):
super().setup(stage=stage)
def train__getitem__(self, idx):
for filedict, num_samples in self.train_data:
if idx >= num_samples:
idx -= num_samples
continue
else:
start = 0
if self.duration is not None:
start = idx * self.stride
return self.prepare_segment(filedict, start)
def val__getitem__(self, idx):
return self.prepare_segment(*self._validation[idx])
def test__getitem__(self, idx):
return self.prepare_segment(*self._test[idx])
def prepare_segment(self, file_dict: dict, start_time: float):
clean_segment = self.audio(
file_dict["clean"], offset=start_time, duration=self.duration
)
noisy_segment = self.audio(
file_dict["noisy"], offset=start_time, duration=self.duration
)
clean_segment = F.pad(
clean_segment,
(
0,
int(
self.duration * self.sampling_rate - clean_segment.shape[-1]
),
),
)
noisy_segment = F.pad(
noisy_segment,
(
0,
int(
self.duration * self.sampling_rate - noisy_segment.shape[-1]
),
),
)
return {
"clean": clean_segment,
"noisy": noisy_segment,
}
def train__len__(self):
_, num_examples = list(zip(*self.train_data))
return sum(num_examples)
def val__len__(self):
return len(self._validation)
def test__len__(self):
return len(self._test)

View File

@ -1,3 +0,0 @@
from mayavoz.models.demucs import Demucs
from mayavoz.models.model import Mayamodel
from mayavoz.models.waveunet import WaveUnet

View File

@ -1,5 +0,0 @@
from mayavoz.models.complexnn.conv import ComplexConv2d # noqa
from mayavoz.models.complexnn.conv import ComplexConvTranspose2d # noqa
from mayavoz.models.complexnn.rnn import ComplexLSTM # noqa
from mayavoz.models.complexnn.utils import ComplexBatchNorm2D # noqa
from mayavoz.models.complexnn.utils import ComplexRelu # noqa

View File

@ -1,136 +0,0 @@
from typing import Tuple
import torch
import torch.nn.functional as F
from torch import nn
def init_weights(nnet):
nn.init.xavier_normal_(nnet.weight.data)
nn.init.constant_(nnet.bias, 0.0)
return nnet
class ComplexConv2d(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: int,
kernel_size: Tuple[int, int] = (1, 1),
stride: Tuple[int, int] = (1, 1),
padding: Tuple[int, int] = (0, 0),
groups: int = 1,
dilation: int = 1,
):
"""
Complex Conv2d (non-causal)
"""
super().__init__()
self.in_channels = in_channels // 2
self.out_channels = out_channels // 2
self.kernel_size = kernel_size
self.stride = stride
self.padding = padding
self.groups = groups
self.dilation = dilation
self.real_conv = nn.Conv2d(
self.in_channels,
self.out_channels,
kernel_size=self.kernel_size,
stride=self.stride,
padding=(self.padding[0], 0),
groups=self.groups,
dilation=self.dilation,
)
self.imag_conv = nn.Conv2d(
self.in_channels,
self.out_channels,
kernel_size=self.kernel_size,
stride=self.stride,
padding=(self.padding[0], 0),
groups=self.groups,
dilation=self.dilation,
)
self.imag_conv = init_weights(self.imag_conv)
self.real_conv = init_weights(self.real_conv)
def forward(self, input):
"""
complex axis should be always 1 dim
"""
input = F.pad(input, [self.padding[1], 0, 0, 0])
real, imag = torch.chunk(input, 2, 1)
real_real = self.real_conv(real)
real_imag = self.imag_conv(real)
imag_imag = self.imag_conv(imag)
imag_real = self.real_conv(imag)
real = real_real - imag_imag
imag = real_imag - imag_real
out = torch.cat([real, imag], 1)
return out
class ComplexConvTranspose2d(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: int,
kernel_size: Tuple[int, int] = (1, 1),
stride: Tuple[int, int] = (1, 1),
padding: Tuple[int, int] = (0, 0),
output_padding: Tuple[int, int] = (0, 0),
groups: int = 1,
):
super().__init__()
self.in_channels = in_channels // 2
self.out_channels = out_channels // 2
self.kernel_size = kernel_size
self.stride = stride
self.padding = padding
self.groups = groups
self.output_padding = output_padding
self.real_conv = nn.ConvTranspose2d(
self.in_channels,
self.out_channels,
kernel_size=self.kernel_size,
stride=self.stride,
padding=self.padding,
output_padding=self.output_padding,
groups=self.groups,
)
self.imag_conv = nn.ConvTranspose2d(
self.in_channels,
self.out_channels,
kernel_size=self.kernel_size,
stride=self.stride,
padding=self.padding,
output_padding=self.output_padding,
groups=self.groups,
)
self.real_conv = init_weights(self.real_conv)
self.imag_conv = init_weights(self.imag_conv)
def forward(self, input):
real, imag = torch.chunk(input, 2, 1)
real_real = self.real_conv(real)
real_imag = self.imag_conv(real)
imag_imag = self.imag_conv(imag)
imag_real = self.real_conv(imag)
real = real_real - imag_imag
imag = real_imag + imag_real
out = torch.cat([real, imag], 1)
return out

View File

@ -1,68 +0,0 @@
from typing import List, Optional
import torch
from torch import nn
class ComplexLSTM(nn.Module):
def __init__(
self,
input_size: int,
hidden_size: int,
num_layers: int = 1,
projection_size: Optional[int] = None,
bidirectional: bool = False,
):
super().__init__()
self.input_size = input_size // 2
self.hidden_size = hidden_size // 2
self.num_layers = num_layers
self.real_lstm = nn.LSTM(
self.input_size,
self.hidden_size,
self.num_layers,
bidirectional=bidirectional,
batch_first=False,
)
self.imag_lstm = nn.LSTM(
self.input_size,
self.hidden_size,
self.num_layers,
bidirectional=bidirectional,
batch_first=False,
)
bidirectional = 2 if bidirectional else 1
if projection_size is not None:
self.projection_size = projection_size // 2
self.real_linear = nn.Linear(
self.hidden_size * bidirectional, self.projection_size
)
self.imag_linear = nn.Linear(
self.hidden_size * bidirectional, self.projection_size
)
else:
self.projection_size = None
def forward(self, input):
if isinstance(input, List):
real, imag = input
else:
real, imag = torch.chunk(input, 2, 1)
real_real = self.real_lstm(real)[0]
real_imag = self.imag_lstm(real)[0]
imag_imag = self.imag_lstm(imag)[0]
imag_real = self.real_lstm(imag)[0]
real = real_real - imag_imag
imag = imag_real + real_imag
if self.projection_size is not None:
real = self.real_linear(real)
imag = self.imag_linear(imag)
return [real, imag]

View File

@ -1,199 +0,0 @@
import torch
from torch import nn
class ComplexBatchNorm2D(nn.Module):
def __init__(
self,
num_features: int,
eps: float = 1e-5,
momentum: float = 0.1,
affine: bool = True,
track_running_stats: bool = True,
):
"""
Complex batch normalization 2D
https://arxiv.org/abs/1705.09792
"""
super().__init__()
self.num_features = num_features // 2
self.affine = affine
self.momentum = momentum
self.track_running_stats = track_running_stats
self.eps = eps
if self.affine:
self.Wrr = nn.parameter.Parameter(torch.Tensor(self.num_features))
self.Wri = nn.parameter.Parameter(torch.Tensor(self.num_features))
self.Wii = nn.parameter.Parameter(torch.Tensor(self.num_features))
self.Br = nn.parameter.Parameter(torch.Tensor(self.num_features))
self.Bi = nn.parameter.Parameter(torch.Tensor(self.num_features))
else:
self.register_parameter("Wrr", None)
self.register_parameter("Wri", None)
self.register_parameter("Wii", None)
self.register_parameter("Br", None)
self.register_parameter("Bi", None)
if self.track_running_stats:
values = torch.zeros(self.num_features)
self.register_buffer("Mean_real", values)
self.register_buffer("Mean_imag", values)
self.register_buffer("Var_rr", values)
self.register_buffer("Var_ri", values)
self.register_buffer("Var_ii", values)
self.register_buffer(
"num_batches_tracked", torch.tensor(0, dtype=torch.long)
)
else:
self.register_parameter("Mean_real", None)
self.register_parameter("Mean_imag", None)
self.register_parameter("Var_rr", None)
self.register_parameter("Var_ri", None)
self.register_parameter("Var_ii", None)
self.register_parameter("num_batches_tracked", None)
self.reset_parameters()
def reset_parameters(self):
if self.affine:
self.Wrr.data.fill_(1)
self.Wii.data.fill_(1)
self.Wri.data.uniform_(-0.9, 0.9)
self.Br.data.fill_(0)
self.Bi.data.fill_(0)
self.reset_running_stats()
def reset_running_stats(self):
if self.track_running_stats:
self.Mean_real.zero_()
self.Mean_imag.zero_()
self.Var_rr.fill_(1)
self.Var_ri.zero_()
self.Var_ii.fill_(1)
self.num_batches_tracked.zero_()
def extra_repr(self):
return "{num_features}, eps={eps}, momentum={momentum}, affine={affine}, track_running_stats={track_running_stats}".format(
**self.__dict__
)
def forward(self, input):
real, imag = torch.chunk(input, 2, 1)
exp_avg_factor = 0.0
training = self.training and self.track_running_stats
if training:
self.num_batches_tracked += 1
if self.momentum is None:
exp_avg_factor = 1 / self.num_batches_tracked
else:
exp_avg_factor = self.momentum
redux = [i for i in reversed(range(real.dim())) if i != 1]
vdim = [1] * real.dim()
vdim[1] = real.size(1)
if training:
batch_mean_real, batch_mean_imag = real, imag
for dim in redux:
batch_mean_real = batch_mean_real.mean(dim, keepdim=True)
batch_mean_imag = batch_mean_imag.mean(dim, keepdim=True)
if self.track_running_stats:
self.Mean_real.lerp_(batch_mean_real.squeeze(), exp_avg_factor)
self.Mean_imag.lerp_(batch_mean_imag.squeeze(), exp_avg_factor)
else:
batch_mean_real = self.Mean_real.view(vdim)
batch_mean_imag = self.Mean_imag.view(vdim)
real = real - batch_mean_real
imag = imag - batch_mean_imag
if training:
batch_var_rr = real * real
batch_var_ri = real * imag
batch_var_ii = imag * imag
for dim in redux:
batch_var_rr = batch_var_rr.mean(dim, keepdim=True)
batch_var_ri = batch_var_ri.mean(dim, keepdim=True)
batch_var_ii = batch_var_ii.mean(dim, keepdim=True)
if self.track_running_stats:
self.Var_rr.lerp_(batch_var_rr.squeeze(), exp_avg_factor)
self.Var_ri.lerp_(batch_var_ri.squeeze(), exp_avg_factor)
self.Var_ii.lerp_(batch_var_ii.squeeze(), exp_avg_factor)
else:
batch_var_rr = self.Var_rr.view(vdim)
batch_var_ii = self.Var_ii.view(vdim)
batch_var_ri = self.Var_ri.view(vdim)
batch_var_rr += self.eps
batch_var_ii += self.eps
# Covariance matrics
# | batch_var_rr batch_var_ri |
# | batch_var_ir batch_var_ii | here batch_var_ir == batch_var_ri
# Inverse square root of cov matrix by combining below two formulas
# https://en.wikipedia.org/wiki/Square_root_of_a_2_by_2_matrix
# https://mathworld.wolfram.com/MatrixInverse.html
tau = batch_var_rr + batch_var_ii
s = batch_var_rr * batch_var_ii - batch_var_ri * batch_var_ri
t = (tau + 2 * s).sqrt()
rst = (s * t).reciprocal()
Urr = (batch_var_ii + s) * rst
Uri = -batch_var_ri * rst
Uii = (batch_var_rr + s) * rst
if self.affine:
Wrr, Wri, Wii = (
self.Wrr.view(vdim),
self.Wri.view(vdim),
self.Wii.view(vdim),
)
Zrr = (Wrr * Urr) + (Wri * Uri)
Zri = (Wrr * Uri) + (Wri * Uii)
Zir = (Wii * Uri) + (Wri * Urr)
Zii = (Wri * Uri) + (Wii * Uii)
else:
Zrr, Zri, Zir, Zii = Urr, Uri, Uri, Uii
yr = (Zrr * real) + (Zri * imag)
yi = (Zir * real) + (Zii * imag)
if self.affine:
yr = yr + self.Br.view(vdim)
yi = yi + self.Bi.view(vdim)
outputs = torch.cat([yr, yi], 1)
return outputs
class ComplexRelu(nn.Module):
def __init__(self):
super().__init__()
self.real_relu = nn.PReLU()
self.imag_relu = nn.PReLU()
def forward(self, input):
real, imag = torch.chunk(input, 2, 1)
real = self.real_relu(real)
imag = self.imag_relu(imag)
return torch.cat([real, imag], dim=1)
def complex_cat(inputs, axis=1):
real, imag = [], []
for data in inputs:
real_data, imag_data = torch.chunk(data, 2, axis)
real.append(real_data)
imag.append(imag_data)
real = torch.cat(real, axis)
imag = torch.cat(imag, axis)
return torch.cat([real, imag], axis)

View File

@ -1,338 +0,0 @@
import warnings
from typing import Any, List, Optional, Tuple, Union
import torch
import torch.nn.functional as F
from torch import nn
from mayavoz.data import MayaDataset
from mayavoz.models import Mayamodel
from mayavoz.models.complexnn import (
ComplexBatchNorm2D,
ComplexConv2d,
ComplexConvTranspose2d,
ComplexLSTM,
ComplexRelu,
)
from mayavoz.models.complexnn.utils import complex_cat
from mayavoz.utils.transforms import ConviSTFT, ConvSTFT
from mayavoz.utils.utils import merge_dict
class DCCRN_ENCODER(nn.Module):
def __init__(
self,
in_channels: int,
out_channel: int,
kernel_size: Tuple[int, int],
complex_norm: bool = True,
complex_relu: bool = True,
stride: Tuple[int, int] = (2, 1),
padding: Tuple[int, int] = (2, 1),
):
super().__init__()
batchnorm = ComplexBatchNorm2D if complex_norm else nn.BatchNorm2d
activation = ComplexRelu() if complex_relu else nn.PReLU()
self.encoder = nn.Sequential(
ComplexConv2d(
in_channels,
out_channel,
kernel_size=kernel_size,
stride=stride,
padding=padding,
),
batchnorm(out_channel),
activation,
)
def forward(self, waveform):
return self.encoder(waveform)
class DCCRN_DECODER(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: int,
kernel_size: Tuple[int, int],
layer: int = 0,
complex_norm: bool = True,
complex_relu: bool = True,
stride: Tuple[int, int] = (2, 1),
padding: Tuple[int, int] = (2, 0),
output_padding: Tuple[int, int] = (1, 0),
):
super().__init__()
batchnorm = ComplexBatchNorm2D if complex_norm else nn.BatchNorm2d
activation = ComplexRelu() if complex_relu else nn.PReLU()
if layer != 0:
self.decoder = nn.Sequential(
ComplexConvTranspose2d(
in_channels,
out_channels,
kernel_size=kernel_size,
stride=stride,
padding=padding,
output_padding=output_padding,
),
batchnorm(out_channels),
activation,
)
else:
self.decoder = nn.Sequential(
ComplexConvTranspose2d(
in_channels,
out_channels,
kernel_size=kernel_size,
stride=stride,
padding=padding,
output_padding=output_padding,
)
)
def forward(self, waveform):
return self.decoder(waveform)
class DCCRN(Mayamodel):
STFT_DEFAULTS = {
"window_len": 400,
"hop_size": 100,
"nfft": 512,
"window": "hamming",
}
ED_DEFAULTS = {
"initial_output_channels": 32,
"depth": 6,
"kernel_size": 5,
"growth_factor": 2,
"stride": 2,
"padding": 2,
"output_padding": 1,
}
LSTM_DEFAULTS = {
"num_layers": 2,
"hidden_size": 256,
}
def __init__(
self,
stft: Optional[dict] = None,
encoder_decoder: Optional[dict] = None,
lstm: Optional[dict] = None,
complex_lstm: bool = True,
complex_norm: bool = True,
complex_relu: bool = True,
masking_mode: str = "E",
num_channels: int = 1,
sampling_rate=16000,
lr: float = 1e-3,
dataset: Optional[MayaDataset] = None,
duration: Optional[float] = None,
loss: Union[str, List, Any] = "mse",
metric: Union[str, List] = "mse",
):
duration = (
dataset.duration if isinstance(dataset, MayaDataset) else duration
)
if dataset is not None:
if sampling_rate != dataset.sampling_rate:
warnings.warn(
f"model sampling rate {sampling_rate} should match dataset sampling rate {dataset.sampling_rate}"
)
sampling_rate = dataset.sampling_rate
super().__init__(
num_channels=num_channels,
sampling_rate=sampling_rate,
lr=lr,
dataset=dataset,
duration=duration,
loss=loss,
metric=metric,
)
encoder_decoder = merge_dict(self.ED_DEFAULTS, encoder_decoder)
lstm = merge_dict(self.LSTM_DEFAULTS, lstm)
stft = merge_dict(self.STFT_DEFAULTS, stft)
self.save_hyperparameters(
"encoder_decoder",
"lstm",
"stft",
"complex_lstm",
"complex_norm",
"masking_mode",
)
self.complex_lstm = complex_lstm
self.complex_norm = complex_norm
self.masking_mode = masking_mode
self.stft = ConvSTFT(
stft["window_len"], stft["hop_size"], stft["nfft"], stft["window"]
)
self.istft = ConviSTFT(
stft["window_len"], stft["hop_size"], stft["nfft"], stft["window"]
)
self.encoder = nn.ModuleList()
self.decoder = nn.ModuleList()
num_channels *= 2
hidden_size = encoder_decoder["initial_output_channels"]
growth_factor = 2
for layer in range(encoder_decoder["depth"]):
encoder_ = DCCRN_ENCODER(
num_channels,
hidden_size,
kernel_size=(encoder_decoder["kernel_size"], 2),
stride=(encoder_decoder["stride"], 1),
padding=(encoder_decoder["padding"], 1),
complex_norm=complex_norm,
complex_relu=complex_relu,
)
self.encoder.append(encoder_)
decoder_ = DCCRN_DECODER(
hidden_size + hidden_size,
num_channels,
layer=layer,
kernel_size=(encoder_decoder["kernel_size"], 2),
stride=(encoder_decoder["stride"], 1),
padding=(encoder_decoder["padding"], 0),
output_padding=(encoder_decoder["output_padding"], 0),
complex_norm=complex_norm,
complex_relu=complex_relu,
)
self.decoder.insert(0, decoder_)
if layer < encoder_decoder["depth"] - 3:
num_channels = hidden_size
hidden_size *= growth_factor
else:
num_channels = hidden_size
kernel_size = hidden_size / 2
hidden_size = stft["nfft"] / 2 ** (encoder_decoder["depth"])
if self.complex_lstm:
lstms = []
for layer in range(lstm["num_layers"]):
if layer == 0:
input_size = int(hidden_size * kernel_size)
else:
input_size = lstm["hidden_size"]
if layer == lstm["num_layers"] - 1:
projection_size = int(hidden_size * kernel_size)
else:
projection_size = None
kwargs = {
"input_size": input_size,
"hidden_size": lstm["hidden_size"],
"num_layers": 1,
}
lstms.append(
ComplexLSTM(projection_size=projection_size, **kwargs)
)
self.lstm = nn.Sequential(*lstms)
else:
self.lstm = nn.Sequential(
nn.LSTM(
input_size=hidden_size * kernel_size,
hidden_sizs=lstm["hidden_size"],
num_layers=lstm["num_layers"],
dropout=0.0,
batch_first=False,
)[0],
nn.Linear(lstm["hidden"], hidden_size * kernel_size),
)
def forward(self, waveform):
if waveform.dim() == 2:
waveform = waveform.unsqueeze(1)
if waveform.size(1) != self.hparams.num_channels:
raise ValueError(
f"Number of input channels initialized is {self.hparams.num_channels} but got {waveform.size(1)} channels"
)
waveform_stft = self.stft(waveform)
real = waveform_stft[:, : self.stft.nfft // 2 + 1]
imag = waveform_stft[:, self.stft.nfft // 2 + 1 :]
mag_spec = torch.sqrt(real**2 + imag**2 + 1e-9)
phase_spec = torch.atan2(imag, real)
complex_spec = torch.stack([mag_spec, phase_spec], 1)[:, :, 1:]
encoder_outputs = []
out = complex_spec
for _, encoder in enumerate(self.encoder):
out = encoder(out)
encoder_outputs.append(out)
B, C, D, T = out.size()
out = out.permute(3, 0, 1, 2)
if self.complex_lstm:
lstm_real = out[:, :, : C // 2]
lstm_imag = out[:, :, C // 2 :]
lstm_real = lstm_real.reshape(T, B, C // 2 * D)
lstm_imag = lstm_imag.reshape(T, B, C // 2 * D)
lstm_real, lstm_imag = self.lstm([lstm_real, lstm_imag])
lstm_real = lstm_real.reshape(T, B, C // 2, D)
lstm_imag = lstm_imag.reshape(T, B, C // 2, D)
out = torch.cat([lstm_real, lstm_imag], 2)
else:
out = out.reshape(T, B, C * D)
out = self.lstm(out)
out = out.reshape(T, B, D, C)
out = out.permute(1, 2, 3, 0)
for layer, decoder in enumerate(self.decoder):
skip_connection = encoder_outputs.pop(-1)
out = complex_cat([skip_connection, out])
out = decoder(out)
out = out[..., 1:]
mask_real, mask_imag = out[:, 0], out[:, 1]
mask_real = F.pad(mask_real, [0, 0, 1, 0])
mask_imag = F.pad(mask_imag, [0, 0, 1, 0])
if self.masking_mode == "E":
mask_mag = torch.sqrt(mask_real**2 + mask_imag**2)
real_phase = mask_real / (mask_mag + 1e-8)
imag_phase = mask_imag / (mask_mag + 1e-8)
mask_phase = torch.atan2(imag_phase, real_phase)
mask_mag = torch.tanh(mask_mag)
est_mag = mask_mag * mag_spec
est_phase = mask_phase * phase_spec
# cos(theta) + isin(theta)
real = est_mag + torch.cos(est_phase)
imag = est_mag + torch.sin(est_phase)
if self.masking_mode == "C":
real = real * mask_real - imag * mask_imag
imag = real * mask_imag + imag * mask_real
else:
real = real * mask_real
imag = imag * mask_imag
spec = torch.cat([real, imag], 1)
wav = self.istft(spec)
wav = wav.clamp_(-1, 1)
return wav

View File

@ -1,3 +0,0 @@
from mayavoz.utils.config import Files
from mayavoz.utils.io import Audio
from mayavoz.utils.utils import check_files

View File

@ -1,93 +0,0 @@
from typing import Optional
import numpy as np
import torch
import torch.nn.functional as F
from scipy.signal import get_window
from torch import nn
class ConvFFT(nn.Module):
def __init__(
self,
window_len: int,
nfft: Optional[int] = None,
window: str = "hamming",
):
super().__init__()
self.window_len = window_len
self.nfft = nfft if nfft else np.int(2 ** np.ceil(np.log2(window_len)))
self.window = torch.from_numpy(
get_window(window, window_len, fftbins=True).astype("float32")
)
def init_kernel(self, inverse=False):
fourier_basis = np.fft.rfft(np.eye(self.nfft))[: self.window_len]
real, imag = np.real(fourier_basis), np.imag(fourier_basis)
kernel = np.concatenate([real, imag], 1).T
if inverse:
kernel = np.linalg.pinv(kernel).T
kernel = torch.from_numpy(kernel.astype("float32")).unsqueeze(1)
kernel *= self.window
return kernel
class ConvSTFT(ConvFFT):
def __init__(
self,
window_len: int,
hop_size: Optional[int] = None,
nfft: Optional[int] = None,
window: str = "hamming",
):
super().__init__(window_len=window_len, nfft=nfft, window=window)
self.hop_size = hop_size if hop_size else window_len // 2
self.register_buffer("weight", self.init_kernel())
def forward(self, input):
if input.dim() < 2:
raise ValueError(
f"Expected signal with shape 2 or 3 got {input.dim()}"
)
elif input.dim() == 2:
input = input.unsqueeze(1)
else:
pass
input = F.pad(
input,
(self.window_len - self.hop_size, self.window_len - self.hop_size),
)
output = F.conv1d(input, self.weight, stride=self.hop_size)
return output
class ConviSTFT(ConvFFT):
def __init__(
self,
window_len: int,
hop_size: Optional[int] = None,
nfft: Optional[int] = None,
window: str = "hamming",
):
super().__init__(window_len=window_len, nfft=nfft, window=window)
self.hop_size = hop_size if hop_size else window_len // 2
self.register_buffer("weight", self.init_kernel(True))
self.register_buffer("enframe", torch.eye(window_len).unsqueeze(1))
def forward(self, input, phase=None):
if phase is not None:
real = input * torch.cos(phase)
imag = input * torch.sin(phase)
input = torch.cat([real, imag], 1)
out = F.conv_transpose1d(input, self.weight, stride=self.hop_size)
coeff = self.window.unsqueeze(1).repeat(1, 1, input.size(-1)) ** 2
coeff = coeff.to(input.device)
coeff = F.conv_transpose1d(coeff, self.enframe, stride=self.hop_size)
out = out / (coeff + 1e-8)
pad = self.window_len - self.hop_size
out = out[..., pad:-pad]
return out

View File

@ -0,0 +1,30 @@
# Configuration for generating Noisy Speech Dataset
# - sampling_rate: Specify the sampling rate. Default is 16 kHz
# - audioformat: default is .wav
# - audio_length: Minimum Length of each audio clip (noisy and clean speech) in seconds that will be generated by augmenting utterances.
# - silence_length: Duration of silence introduced between clean speech utterances.
# - total_hours: Total number of hours of data required. Units are in hours.
# - snr_lower: Lower bound for SNR required (default: 0 dB)
# - snr_upper: Upper bound for SNR required (default: 40 dB)
# - total_snrlevels: Number of SNR levels required (default: 5, which means there are 5 levels between snr_lower and snr_upper)
# - noise_dir: Default is None. But specify the noise directory path if noise files are not in the source directory
# - Speech_dir: Default is None. But specify the speech directory path if speech files are not in the source directory
# - noise_types_excluded: Noise files starting with the following tags to be excluded in the noise list. Example: noise_types_excluded: Babble, AirConditioner
# Specify 'None' if no noise files to be excluded.
[noisy_speech]
sampling_rate: 16000
audioformat: *.wav
audio_length: 10
silence_length: 0.2
total_hours: 1
snr_lower: 0
snr_upper: 40
total_snrlevels: 2
naming: test
noise_dir: /scratch/c.sistc3/MS-SNSD/noise_test
speech_dir: /scratch/c.sistc3/MS-SNSD/clean_test
noise_types_excluded: None

155
noisyspeech_synthesizer.py Normal file
View File

@ -0,0 +1,155 @@
"""
@author: chkarada
"""
import argparse
import configparser as CP
import glob
import os
import numpy as np
from audiolib import audioread, audiowrite, snr_mixer
def main(cfg):
snr_lower = float(cfg["snr_lower"])
snr_upper = float(cfg["snr_upper"])
total_snrlevels = int(cfg["total_snrlevels"])
clean_dir = os.path.join(os.path.dirname(__file__), "clean_train")
if cfg["speech_dir"] != "None":
clean_dir = cfg["speech_dir"]
if not os.path.exists(clean_dir):
assert False, "Clean speech data is required"
noise_dir = os.path.join(os.path.dirname(__file__), "noise_train")
if cfg["noise_dir"] != "None":
noise_dir = cfg["noise_dir"]
if not os.path.exists(noise_dir):
assert False, "Noise data is required"
name = cfg["naming"]
fs = float(cfg["sampling_rate"])
audioformat = cfg["audioformat"]
total_hours = float(cfg["total_hours"])
audio_length = float(cfg["audio_length"])
silence_length = float(cfg["silence_length"])
noisyspeech_dir = os.path.join(
os.path.dirname(__file__), f"NoisySpeech_{name}ing"
)
if not os.path.exists(noisyspeech_dir):
os.makedirs(noisyspeech_dir)
clean_proc_dir = os.path.join(
os.path.dirname(__file__), f"CleanSpeech_{name}ing"
)
if not os.path.exists(clean_proc_dir):
os.makedirs(clean_proc_dir)
noise_proc_dir = os.path.join(
os.path.dirname(__file__), f"NoisySpeech_{name}ing"
)
if not os.path.exists(noise_proc_dir):
os.makedirs(noise_proc_dir)
total_secs = total_hours * 60 * 60
total_samples = int(total_secs * fs)
audio_length = int(audio_length * fs)
SNR = np.linspace(snr_lower, snr_upper, total_snrlevels)
cleanfilenames = glob.glob(os.path.join(clean_dir, audioformat))
if cfg["noise_types_excluded"] == "None":
noisefilenames = glob.glob(os.path.join(noise_dir, audioformat))
else:
filestoexclude = cfg["noise_types_excluded"].split(",")
noisefilenames = glob.glob(os.path.join(noise_dir, audioformat))
for i in range(len(filestoexclude)):
noisefilenames = [
fn
for fn in noisefilenames
if not os.path.basename(fn).startswith(filestoexclude[i])
]
filecounter = 0
num_samples = 0
while num_samples < total_samples:
idx_s = np.random.randint(0, np.size(cleanfilenames))
clean, fs = audioread(cleanfilenames[idx_s])
if len(clean) > audio_length:
clean = clean
else:
while len(clean) <= audio_length:
idx_s = idx_s + 1
if idx_s >= np.size(cleanfilenames) - 1:
idx_s = np.random.randint(0, np.size(cleanfilenames))
newclean, fs = audioread(cleanfilenames[idx_s])
cleanconcat = np.append(
clean, np.zeros(int(fs * silence_length))
)
clean = np.append(cleanconcat, newclean)
idx_n = np.random.randint(0, np.size(noisefilenames))
noise, fs = audioread(noisefilenames[idx_n])
if len(noise) >= len(clean):
noise = noise[0 : len(clean)]
else:
while len(noise) <= len(clean):
idx_n = idx_n + 1
if idx_n >= np.size(noisefilenames) - 1:
idx_n = np.random.randint(0, np.size(noisefilenames))
newnoise, fs = audioread(noisefilenames[idx_n])
noiseconcat = np.append(
noise, np.zeros(int(fs * silence_length))
)
noise = np.append(noiseconcat, newnoise)
noise = noise[0 : len(clean)]
filecounter = filecounter + 1
for i in range(np.size(SNR)):
clean_snr, noise_snr, noisy_snr = snr_mixer(
clean=clean, noise=noise, snr=SNR[i]
)
noisyfilename = (
"noisy"
+ str(filecounter)
+ "_SNRdb_"
+ str(SNR[i])
+ "_clnsp"
+ str(filecounter)
+ ".wav"
)
cleanfilename = "clnsp" + str(filecounter) + ".wav"
noisefilename = (
"noisy" + str(filecounter) + "_SNRdb_" + str(SNR[i]) + ".wav"
)
noisypath = os.path.join(noisyspeech_dir, noisyfilename)
cleanpath = os.path.join(clean_proc_dir, cleanfilename)
noisepath = os.path.join(noise_proc_dir, noisefilename)
audiowrite(noisy_snr, fs, noisypath, norm=False)
audiowrite(clean_snr, fs, cleanpath, norm=False)
audiowrite(noise_snr, fs, noisepath, norm=False)
num_samples = num_samples + len(noisy_snr)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Configurations: read noisyspeech_synthesizer.cfg
parser.add_argument(
"--cfg",
default="noisyspeech_synthesizer.cfg",
help="Read noisyspeech_synthesizer.cfg for all the details",
)
parser.add_argument("--cfg_str", type=str, default="noisy_speech")
args = parser.parse_args()
cfgpath = os.path.join(os.path.dirname(__file__), args.cfg)
assert os.path.exists(cfgpath), f"No configuration file as [{cfgpath}]"
cfg = CP.ConfigParser()
cfg._interpolation = CP.ExtendedInterpolation()
cfg.read(cfgpath)
main(cfg._sections[args.cfg_str])

View File

@ -1,338 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "ccd61d5c",
"metadata": {},
"source": [
"## Custom model training using mayavoz [advanced]\n",
"\n",
"In this tutorial, we will cover advanced usages and customizations for training your own speecg enhancement model. \n",
"\n",
" - [Data preparation using MayaDataset](#dataprep)\n",
" - [Model customization](#modelcustom)\n",
" - [callbacks & LR schedulers](#callbacks)\n",
" - [Model training & testing](#train)\n"
]
},
{
"cell_type": "markdown",
"id": "726c320f",
"metadata": {},
"source": [
"- **install mayavoz**"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c987c799",
"metadata": {},
"outputs": [],
"source": [
"! pip install -q mayavoz"
]
},
{
"cell_type": "markdown",
"id": "8ff9857b",
"metadata": {},
"source": [
"<div id=\"dataprep\"></div>\n",
"\n",
"### Data preparation\n",
"\n",
"`Files` is a dataclass that wraps and holds train/test paths togethor. There are usually one folder each for clean and noisy data. These paths must be relative to a `root_dir` where all these directories reside. For example\n",
"\n",
"```\n",
"- VCTK/\n",
" |__ clean_train_wav/\n",
" |__ noisy_train_wav/\n",
" |__ clean_test_wav/\n",
" |__ noisy_test_wav/\n",
" \n",
"```"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "64cbc0c8",
"metadata": {},
"outputs": [],
"source": [
"from mayavoz.utils import Files\n",
"file = Files(train_clean=\"clean_train_wav\",\n",
" train_noisy=\"noisy_train_wav\",\n",
" test_clean=\"clean_test_wav\",\n",
" test_noisy=\"noisy_test_wav\")\n",
"root_dir = \"VCTK\""
]
},
{
"cell_type": "markdown",
"id": "2d324bd1",
"metadata": {},
"source": [
"- `name`: name of the dataset. \n",
"- `duration`: control the duration of each audio instance fed into your model.\n",
"- `stride` is used if set to move the sliding window.\n",
"- `sampling_rate`: desired sampling rate for audio\n",
"- `batch_size`: model batch size\n",
"- `min_valid_minutes`: minimum validation in minutes. Validation is automatically selected from training set. (exclusive users).\n",
"- `matching_function`: there are two types of mapping functions.\n",
" - `one_to_one` : In this one clean file will only have one corresponding noisy file. For example Valentini datasets\n",
" - `one_to_many` : In this one clean file will only have one corresponding noisy file. For example MS-SNSD dataset.\n"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "6834941d",
"metadata": {},
"outputs": [],
"source": [
"name = \"vctk\"\n",
"duration : 4.5\n",
"stride : 2.0\n",
"sampling_rate : 16000\n",
"min_valid_minutes : 20.0\n",
"batch_size : 32\n",
"matching_function : \"one_to_one\"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d08c6bf8",
"metadata": {},
"outputs": [],
"source": [
"from mayavoz.dataset import MayaDataset\n",
"dataset = MayaDataset(\n",
" name=name,\n",
" root_dir=root_dir,\n",
" files=files,\n",
" duration=duration,\n",
" stride=stride,\n",
" sampling_rate=sampling_rate,\n",
" batch_size=batch_size,\n",
" min_valid_minutes=min_valid_minutes,\n",
" matching_function=matching_function\n",
" )"
]
},
{
"cell_type": "markdown",
"id": "5b315bde",
"metadata": {},
"source": [
"Now your custom dataloader is ready!"
]
},
{
"cell_type": "markdown",
"id": "01548fe5",
"metadata": {},
"source": [
"<div id=\"modelcustom\"></div>\n",
"\n",
"### Model Customization\n",
"Now, this is very easy. \n",
"\n",
"- Import the preferred model from `mayavoz.models`. Currently 3 models are implemented.\n",
" - `WaveUnet`\n",
" - `Demucs`\n",
" - `DCCRN`\n",
"- Each of model hyperparameters such as depth,kernel_size,stride etc can be controlled by you. Just check the parameters and pass it to as required.\n",
"- `sampling_rate`: sampling rate (should be equal to dataset sampling rate)\n",
"- `dataset`: mayavoz dataset object as prepared earlier.\n",
"- `loss` : model loss. Multiple loss functions are available.\n",
"\n",
" \n",
" \n",
"you can pass one (as string)/more (as list of strings) of these loss functions as per your requirements. For example, model will automatically calculate loss as average of `mae` and `mse` if you pass loss as `[\"mae\",\"mse\"]`. Available loss functions are `mse`,`mae`,`si-snr`.\n",
"\n",
"mayavoz can accept **custom loss functions**. It should be of the form.\n",
"```\n",
"class your_custom_loss(nn.Module):\n",
" def __init__(self,**kwargs):\n",
" self.higher_better = False ## loss minimization direction\n",
" self.name = \"your_loss_name\" ## loss name logging \n",
" ...\n",
" def forward(self,prediction, target):\n",
" loss = ....\n",
" return loss\n",
" \n",
"```\n",
"\n",
"- metrics : validation metrics. Available options `mae`,`mse`,`si-sdr`,`si-sdr`,`pesq`,`stoi`. One or more can be used.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b36b457c",
"metadata": {},
"outputs": [],
"source": [
"from mayavoz.models import Demucs\n",
"model = Demucs(\n",
" sampling_rate=16000,\n",
" dataset=dataset,\n",
" loss=[\"mae\"],\n",
" metrics=[\"stoi\",\"pesq\"])\n"
]
},
{
"cell_type": "markdown",
"id": "1523d638",
"metadata": {},
"source": [
"<div id=\"callbacks\"></div>\n",
"\n",
"### learning rate schedulers and callbacks\n",
"Here I am using `ReduceLROnPlateau`"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "8de6931c",
"metadata": {},
"outputs": [],
"source": [
"from torch.optim.lr_scheduler import ReduceLROnPlateau\n",
"\n",
"def configure_optimizers(self):\n",
" optimizer = instantiate(\n",
" config.optimizer,\n",
" lr=parameters.get(\"lr\"),\n",
" params=self.parameters(),\n",
" )\n",
" scheduler = ReduceLROnPlateau(\n",
" optimizer=optimizer,\n",
" mode=direction,\n",
" factor=parameters.get(\"ReduceLr_factor\", 0.1),\n",
" verbose=True,\n",
" min_lr=parameters.get(\"min_lr\", 1e-6),\n",
" patience=parameters.get(\"ReduceLr_patience\", 3),\n",
" )\n",
" return {\n",
" \"optimizer\": optimizer,\n",
" \"lr_scheduler\": scheduler,\n",
" \"monitor\": f'valid_{parameters.get(\"ReduceLr_monitor\", \"loss\")}',\n",
" }\n",
"\n",
"\n",
"model.configure_optimizers = MethodType(configure_optimizers, model)"
]
},
{
"cell_type": "markdown",
"id": "2f7b5af5",
"metadata": {},
"source": [
"you can use any number of callbacks and pass it directly to pytorch lightning trainer. Here I am using only `ModelCheckpoint`"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "6f6b62a1",
"metadata": {},
"outputs": [],
"source": [
"callbacks = []\n",
"direction = model.valid_monitor ## min or max \n",
"checkpoint = ModelCheckpoint(\n",
" dirpath=\"./model\",\n",
" filename=f\"model_filename\",\n",
" monitor=\"valid_loss\",\n",
" verbose=False,\n",
" mode=direction,\n",
" every_n_epochs=1,\n",
" )\n",
"callbacks.append(checkpoint)"
]
},
{
"cell_type": "markdown",
"id": "f3534445",
"metadata": {},
"source": [
"<div id=\"train\"></div>\n",
"\n",
"\n",
"### Train"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "3dc0348b",
"metadata": {},
"outputs": [],
"source": [
"import pytorch_lightning as pl\n",
"trainer = plt.Trainer(max_epochs=1,callbacks=callbacks,accelerator=\"gpu\")\n",
"trainer.fit(model)\n"
]
},
{
"cell_type": "markdown",
"id": "56dcfec1",
"metadata": {},
"source": [
"- Test your model agaist test dataset"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "63851feb",
"metadata": {},
"outputs": [],
"source": [
"trainer.test(model)"
]
},
{
"cell_type": "markdown",
"id": "4d3f5350",
"metadata": {},
"source": [
"**Hurray! you have your speech enhancement model trained and tested.**\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "10d630e8",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "enhancer",
"language": "python",
"name": "enhancer"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.13"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

File diff suppressed because one or more lines are too long

View File

@ -2,7 +2,6 @@
line-length = 80
target-version = ['py38']
exclude = '''
(
/(
\.eggs # exclude a few common directories in the
@ -10,6 +9,9 @@ exclude = '''
| \.mypy_cache
| \.tox
| \.venv
| noisyspeech_synthesizer.py
| noisyspeech_synthesizer.cfg
)/
)
'''

View File

@ -1,120 +0,0 @@
import os
from types import MethodType
import hydra
from hydra.utils import instantiate
from omegaconf import DictConfig, OmegaConf
from pytorch_lightning.callbacks import (
EarlyStopping,
LearningRateMonitor,
ModelCheckpoint,
)
from pytorch_lightning.loggers import MLFlowLogger
from torch.optim.lr_scheduler import ReduceLROnPlateau
# from torch_audiomentations import Compose, Shift
os.environ["HYDRA_FULL_ERROR"] = "1"
JOB_ID = os.environ.get("SLURM_JOBID", "0")
@hydra.main(config_path="train_config", config_name="config")
def train(config: DictConfig):
OmegaConf.save(config, "config.yaml")
callbacks = []
logger = MLFlowLogger(
experiment_name=config.mlflow.experiment_name,
run_name=config.mlflow.run_name,
tags={"JOB_ID": JOB_ID},
)
parameters = config.hyperparameters
# apply_augmentations = Compose(
# [
# Shift(min_shift=0.5, max_shift=1.0, shift_unit="seconds", p=0.5),
# ]
# )
dataset = instantiate(config.dataset, augmentations=None)
model = instantiate(
config.model,
dataset=dataset,
lr=parameters.get("lr"),
loss=parameters.get("loss"),
metric=parameters.get("metric"),
)
direction = model.valid_monitor
checkpoint = ModelCheckpoint(
dirpath="./model",
filename=f"model_{JOB_ID}",
monitor="valid_loss",
verbose=False,
mode=direction,
every_n_epochs=1,
)
callbacks.append(checkpoint)
callbacks.append(LearningRateMonitor(logging_interval="epoch"))
if parameters.get("Early_stop", False):
early_stopping = EarlyStopping(
monitor="val_loss",
mode=direction,
min_delta=0.0,
patience=parameters.get("EarlyStopping_patience", 10),
strict=True,
verbose=False,
)
callbacks.append(early_stopping)
def configure_optimizers(self):
optimizer = instantiate(
config.optimizer,
lr=parameters.get("lr"),
params=self.parameters(),
)
scheduler = ReduceLROnPlateau(
optimizer=optimizer,
mode=direction,
factor=parameters.get("ReduceLr_factor", 0.1),
verbose=True,
min_lr=parameters.get("min_lr", 1e-6),
patience=parameters.get("ReduceLr_patience", 3),
)
return {
"optimizer": optimizer,
"lr_scheduler": scheduler,
"monitor": f'valid_{parameters.get("ReduceLr_monitor", "loss")}',
}
model.configure_optimizers = MethodType(configure_optimizers, model)
trainer = instantiate(config.trainer, logger=logger, callbacks=callbacks)
trainer.fit(model)
trainer.test(model)
logger.experiment.log_artifact(
logger.run_id, f"{trainer.default_root_dir}/config.yaml"
)
saved_location = os.path.join(
trainer.default_root_dir, "model", f"model_{JOB_ID}.ckpt"
)
if os.path.isfile(saved_location):
logger.experiment.log_artifact(logger.run_id, saved_location)
logger.experiment.log_param(
logger.run_id,
"num_train_steps_per_epoch",
dataset.train__len__() / dataset.batch_size,
)
logger.experiment.log_param(
logger.run_id,
"num_valid_steps_per_epoch",
dataset.val__len__() / dataset.batch_size,
)
if __name__ == "__main__":
train()

View File

@ -1,7 +0,0 @@
defaults:
- model : Demucs
- dataset : MS-SNSD
- optimizer : Adam
- hyperparameters : default
- trainer : default
- mlflow : experiment

View File

@ -1,13 +0,0 @@
_target_: mayavoz.data.dataset.MayaDataset
name : MS-SDSD
root_dir : /Users/shahules/Myprojects/MS-SNSD
duration : 1.5
stride : 1
sampling_rate: 16000
batch_size: 32
min_valid_minutes: 25
files:
train_clean : CleanSpeech_training
test_clean : CleanSpeech_training
train_noisy : NoisySpeech_training
test_noisy : NoisySpeech_training

View File

@ -1,2 +0,0 @@
experiment_name : shahules/mayavoz
run_name : Demucs + Vtck with stride + augmentations

View File

@ -1,25 +0,0 @@
_target_: mayavoz.models.dccrn.DCCRN
num_channels: 1
sampling_rate : 16000
complex_lstm : True
complex_norm : True
complex_relu : True
masking_mode : True
encoder_decoder:
initial_output_channels : 32
depth : 6
kernel_size : 5
growth_factor : 2
stride : 2
padding : 2
output_padding : 1
lstm:
num_layers : 2
hidden_size : 256
stft:
window_len : 400
hop_size : 100
nfft : 512

View File

@ -1,6 +0,0 @@
_target_: torch.optim.Adam
lr: 1e-3
betas: [0.9, 0.999]
eps: 1e-08
weight_decay: 0
amsgrad: False

View File

@ -1,46 +0,0 @@
_target_: pytorch_lightning.Trainer
accelerator: gpu
accumulate_grad_batches: 1
amp_backend: native
auto_lr_find: True
auto_scale_batch_size: False
auto_select_gpus: True
benchmark: False
check_val_every_n_epoch: 1
detect_anomaly: False
deterministic: False
devices: 2
enable_checkpointing: True
enable_model_summary: True
enable_progress_bar: True
fast_dev_run: False
gpus: null
gradient_clip_val: 0
gradient_clip_algorithm: norm
ipus: null
limit_predict_batches: 1.0
limit_test_batches: 1.0
limit_train_batches: 1.0
limit_val_batches: 1.0
log_every_n_steps: 50
max_epochs: 200
max_steps: -1
max_time: null
min_epochs: 1
min_steps: null
move_metrics_to_cpu: False
multiple_trainloader_mode: max_size_cycle
num_nodes: 1
num_processes: 1
num_sanity_val_steps: 2
overfit_batches: 0.0
precision: 32
profiler: null
reload_dataloaders_every_n_epochs: 0
replace_sampler_ddp: True
strategy: ddp
sync_batchnorm: False
tpu_cores: null
track_grad_norm: -1
val_check_interval: 1.0
weights_save_path: null

View File

@ -1,2 +0,0 @@
_target_: pytorch_lightning.Trainer
fast_dev_run: True

View File

@ -1,120 +0,0 @@
import os
from types import MethodType
import hydra
from hydra.utils import instantiate
from omegaconf import DictConfig, OmegaConf
from pytorch_lightning.callbacks import (
EarlyStopping,
LearningRateMonitor,
ModelCheckpoint,
)
from pytorch_lightning.loggers import MLFlowLogger
from torch.optim.lr_scheduler import ReduceLROnPlateau
# from torch_audiomentations import Compose, Shift
os.environ["HYDRA_FULL_ERROR"] = "1"
JOB_ID = os.environ.get("SLURM_JOBID", "0")
@hydra.main(config_path="train_config", config_name="config")
def train(config: DictConfig):
OmegaConf.save(config, "config.yaml")
callbacks = []
logger = MLFlowLogger(
experiment_name=config.mlflow.experiment_name,
run_name=config.mlflow.run_name,
tags={"JOB_ID": JOB_ID},
)
parameters = config.hyperparameters
# apply_augmentations = Compose(
# [
# Shift(min_shift=0.5, max_shift=1.0, shift_unit="seconds", p=0.5),
# ]
# )
dataset = instantiate(config.dataset, augmentations=None)
model = instantiate(
config.model,
dataset=dataset,
lr=parameters.get("lr"),
loss=parameters.get("loss"),
metric=parameters.get("metric"),
)
direction = model.valid_monitor
checkpoint = ModelCheckpoint(
dirpath="./model",
filename=f"model_{JOB_ID}",
monitor="valid_loss",
verbose=False,
mode=direction,
every_n_epochs=1,
)
callbacks.append(checkpoint)
callbacks.append(LearningRateMonitor(logging_interval="epoch"))
if parameters.get("Early_stop", False):
early_stopping = EarlyStopping(
monitor="val_loss",
mode=direction,
min_delta=0.0,
patience=parameters.get("EarlyStopping_patience", 10),
strict=True,
verbose=False,
)
callbacks.append(early_stopping)
def configure_optimizers(self):
optimizer = instantiate(
config.optimizer,
lr=parameters.get("lr"),
params=self.parameters(),
)
scheduler = ReduceLROnPlateau(
optimizer=optimizer,
mode=direction,
factor=parameters.get("ReduceLr_factor", 0.1),
verbose=True,
min_lr=parameters.get("min_lr", 1e-6),
patience=parameters.get("ReduceLr_patience", 3),
)
return {
"optimizer": optimizer,
"lr_scheduler": scheduler,
"monitor": f'valid_{parameters.get("ReduceLr_monitor", "loss")}',
}
model.configure_optimizers = MethodType(configure_optimizers, model)
trainer = instantiate(config.trainer, logger=logger, callbacks=callbacks)
trainer.fit(model)
trainer.test(model)
logger.experiment.log_artifact(
logger.run_id, f"{trainer.default_root_dir}/config.yaml"
)
saved_location = os.path.join(
trainer.default_root_dir, "model", f"model_{JOB_ID}.ckpt"
)
if os.path.isfile(saved_location):
logger.experiment.log_artifact(logger.run_id, saved_location)
logger.experiment.log_param(
logger.run_id,
"num_train_steps_per_epoch",
dataset.train__len__() / dataset.batch_size,
)
logger.experiment.log_param(
logger.run_id,
"num_valid_steps_per_epoch",
dataset.val__len__() / dataset.batch_size,
)
if __name__ == "__main__":
train()

View File

@ -1,7 +0,0 @@
defaults:
- model : Demucs
- dataset : MS-SNSD
- optimizer : Adam
- hyperparameters : default
- trainer : default
- mlflow : experiment

View File

@ -1,13 +0,0 @@
_target_: mayavoz.data.dataset.MayaDataset
name : MS-SDSD
root_dir : /Users/shahules/Myprojects/MS-SNSD
duration : 5
stride : 1
sampling_rate: 16000
batch_size: 32
min_valid_minutes: 25
files:
train_clean : CleanSpeech_training
test_clean : CleanSpeech_training
train_noisy : NoisySpeech_training
test_noisy : NoisySpeech_training

View File

@ -1,7 +0,0 @@
loss : mae
metric : [stoi,pesq]
lr : 0.0003
ReduceLr_patience : 10
ReduceLr_factor : 0.5
min_lr : 0.000001
EarlyStopping_factor : 10

View File

@ -1,2 +0,0 @@
experiment_name : shahules/mayavoz
run_name : demucs-ms-snsd

View File

@ -1,16 +0,0 @@
_target_: mayavoz.models.demucs.Demucs
num_channels: 1
resample: 4
sampling_rate : 16000
encoder_decoder:
depth: 4
initial_output_channels: 64
kernel_size: 8
stride: 4
growth_factor: 2
glu: True
lstm:
bidirectional: False
num_layers: 2

View File

@ -1,6 +0,0 @@
_target_: torch.optim.Adam
lr: 1e-3
betas: [0.9, 0.999]
eps: 1e-08
weight_decay: 0
amsgrad: False

View File

@ -1,46 +0,0 @@
_target_: pytorch_lightning.Trainer
accelerator: gpu
accumulate_grad_batches: 1
amp_backend: native
auto_lr_find: True
auto_scale_batch_size: False
auto_select_gpus: True
benchmark: False
check_val_every_n_epoch: 1
detect_anomaly: False
deterministic: False
devices: 2
enable_checkpointing: True
enable_model_summary: True
enable_progress_bar: True
fast_dev_run: False
gpus: null
gradient_clip_val: 0
gradient_clip_algorithm: norm
ipus: null
limit_predict_batches: 1.0
limit_test_batches: 1.0
limit_train_batches: 1.0
limit_val_batches: 1.0
log_every_n_steps: 50
max_epochs: 200
max_steps: -1
max_time: null
min_epochs: 1
min_steps: null
move_metrics_to_cpu: False
multiple_trainloader_mode: max_size_cycle
num_nodes: 1
num_processes: 1
num_sanity_val_steps: 2
overfit_batches: 0.0
precision: 32
profiler: null
reload_dataloaders_every_n_epochs: 0
replace_sampler_ddp: True
strategy: ddp
sync_batchnorm: False
tpu_cores: null
track_grad_norm: -1
val_check_interval: 1.0
weights_save_path: null

View File

@ -1,2 +0,0 @@
_target_: pytorch_lightning.Trainer
fast_dev_run: True

View File

@ -1,17 +0,0 @@
### Microsoft Scalable Noisy Speech Dataset (MS-SNSD)
MS-SNSD is a speech datasetthat can scale to arbitrary sizes depending on the number of speakers, noise types, and Speech to Noise Ratio (SNR) levels desired.
### Dataset download & setup
- Follow steps in the official repo [here](https://github.com/microsoft/MS-SNSD) to download and setup the dataset.
**References**
```BibTex
@article{reddy2019scalable,
title={A Scalable Noisy Speech Dataset and Online Subjective Test Framework},
author={Reddy, Chandan KA and Beyrami, Ebrahim and Pool, Jamie and Cutler, Ross and Srinivasan, Sriram and Gehrke, Johannes},
journal={Proc. Interspeech 2019},
pages={1816--1820},
year={2019}
}
```

View File

@ -1,120 +0,0 @@
import os
from types import MethodType
import hydra
from hydra.utils import instantiate
from omegaconf import DictConfig, OmegaConf
from pytorch_lightning.callbacks import (
EarlyStopping,
LearningRateMonitor,
ModelCheckpoint,
)
from pytorch_lightning.loggers import MLFlowLogger
from torch.optim.lr_scheduler import ReduceLROnPlateau
# from torch_audiomentations import Compose, Shift
os.environ["HYDRA_FULL_ERROR"] = "1"
JOB_ID = os.environ.get("SLURM_JOBID", "0")
@hydra.main(config_path="train_config", config_name="config")
def main(config: DictConfig):
OmegaConf.save(config, "config_log.yaml")
callbacks = []
logger = MLFlowLogger(
experiment_name=config.mlflow.experiment_name,
run_name=config.mlflow.run_name,
tags={"JOB_ID": JOB_ID},
)
parameters = config.hyperparameters
# apply_augmentations = Compose(
# [
# Shift(min_shift=0.5, max_shift=1.0, shift_unit="seconds", p=0.5),
# ]
# )
dataset = instantiate(config.dataset, augmentations=None)
model = instantiate(
config.model,
dataset=dataset,
lr=parameters.get("lr"),
loss=parameters.get("loss"),
metric=parameters.get("metric"),
)
direction = model.valid_monitor
checkpoint = ModelCheckpoint(
dirpath="./model",
filename=f"model_{JOB_ID}",
monitor="valid_loss",
verbose=False,
mode=direction,
every_n_epochs=1,
)
callbacks.append(checkpoint)
callbacks.append(LearningRateMonitor(logging_interval="epoch"))
if parameters.get("Early_stop", False):
early_stopping = EarlyStopping(
monitor="val_loss",
mode=direction,
min_delta=0.0,
patience=parameters.get("EarlyStopping_patience", 10),
strict=True,
verbose=False,
)
callbacks.append(early_stopping)
def configure_optimizers(self):
optimizer = instantiate(
config.optimizer,
lr=parameters.get("lr"),
params=self.parameters(),
)
scheduler = ReduceLROnPlateau(
optimizer=optimizer,
mode=direction,
factor=parameters.get("ReduceLr_factor", 0.1),
verbose=True,
min_lr=parameters.get("min_lr", 1e-6),
patience=parameters.get("ReduceLr_patience", 3),
)
return {
"optimizer": optimizer,
"lr_scheduler": scheduler,
"monitor": f'valid_{parameters.get("ReduceLr_monitor", "loss")}',
}
model.configure_optimizers = MethodType(configure_optimizers, model)
trainer = instantiate(config.trainer, logger=logger, callbacks=callbacks)
trainer.fit(model)
trainer.test(model)
logger.experiment.log_artifact(
logger.run_id, f"{trainer.default_root_dir}/config_log.yaml"
)
saved_location = os.path.join(
trainer.default_root_dir, "model", f"model_{JOB_ID}.ckpt"
)
if os.path.isfile(saved_location):
logger.experiment.log_artifact(logger.run_id, saved_location)
logger.experiment.log_param(
logger.run_id,
"num_train_steps_per_epoch",
dataset.train__len__() / dataset.batch_size,
)
logger.experiment.log_param(
logger.run_id,
"num_valid_steps_per_epoch",
dataset.val__len__() / dataset.batch_size,
)
if __name__ == "__main__":
main()

View File

@ -1,7 +0,0 @@
defaults:
- model : Demucs
- dataset : Vctk
- optimizer : Adam
- hyperparameters : default
- trainer : default
- mlflow : experiment

View File

@ -1,13 +0,0 @@
_target_: mayavoz.data.dataset.MayaDataset
name : vctk
root_dir : /scratch/c.sistc3/DS_10283_2791
duration : 4.5
stride : 0.5
sampling_rate: 16000
batch_size: 32
min_valid_minutes : 25
files:
train_clean : clean_trainset_28spk_wav
test_clean : clean_testset_wav
train_noisy : noisy_trainset_28spk_wav
test_noisy : noisy_testset_wav

View File

@ -1,8 +0,0 @@
loss : mae
metric : [stoi,pesq,si-sdr]
lr : 0.0003
Early_stop : False
ReduceLr_patience : 10
ReduceLr_factor : 0.1
min_lr : 0.000001
EarlyStopping_factor : 10

View File

@ -1,2 +0,0 @@
experiment_name : shahules/mayavoz
run_name : baseline

View File

@ -1,16 +0,0 @@
_target_: mayavoz.models.demucs.Demucs
num_channels: 1
resample: 4
sampling_rate : 16000
encoder_decoder:
depth: 4
initial_output_channels: 64
kernel_size: 8
stride: 4
growth_factor: 2
glu: True
lstm:
bidirectional: True
num_layers: 2

View File

@ -1,6 +0,0 @@
_target_: torch.optim.Adam
lr: 1e-3
betas: [0.9, 0.999]
eps: 1e-08
weight_decay: 0
amsgrad: False

View File

@ -1,7 +0,0 @@
defaults:
- model : WaveUnet
- dataset : Vctk
- optimizer : Adam
- hyperparameters : default
- trainer : default
- mlflow : experiment

View File

@ -1,8 +0,0 @@
loss : mae
metric : [stoi,pesq,si-sdr]
lr : 0.003
ReduceLr_patience : 10
ReduceLr_factor : 0.1
min_lr : 0.000001
EarlyStopping_factor : 10
Early_stop : False

View File

@ -1,2 +0,0 @@
experiment_name : shahules/mayavoz
run_name : baseline

View File

@ -1,5 +0,0 @@
_target_: mayavoz.models.waveunet.WaveUnet
num_channels : 1
depth : 9
initial_output_channels: 24
sampling_rate : 16000

View File

@ -1,6 +0,0 @@
_target_: torch.optim.Adam
lr: 1e-3
betas: [0.9, 0.999]
eps: 1e-08
weight_decay: 0
amsgrad: False

View File

@ -1,46 +0,0 @@
_target_: pytorch_lightning.Trainer
accelerator: gpu
accumulate_grad_batches: 1
amp_backend: native
auto_lr_find: True
auto_scale_batch_size: False
auto_select_gpus: True
benchmark: False
check_val_every_n_epoch: 1
detect_anomaly: False
deterministic: False
devices: 2
enable_checkpointing: True
enable_model_summary: True
enable_progress_bar: True
fast_dev_run: False
gpus: null
gradient_clip_val: 0
gradient_clip_algorithm: norm
ipus: null
limit_predict_batches: 1.0
limit_test_batches: 1.0
limit_train_batches: 1.0
limit_val_batches: 1.0
log_every_n_steps: 50
max_epochs: 200
max_steps: -1
max_time: null
min_epochs: 1
min_steps: null
move_metrics_to_cpu: False
multiple_trainloader_mode: max_size_cycle
num_nodes: 1
num_processes: 1
num_sanity_val_steps: 2
overfit_batches: 0.0
precision: 32
profiler: null
reload_dataloaders_every_n_epochs: 0
replace_sampler_ddp: True
strategy: ddp
sync_batchnorm: False
tpu_cores: null
track_grad_norm: -1
val_check_interval: 1.0
weights_save_path: null

View File

@ -1,2 +0,0 @@
_target_: pytorch_lightning.Trainer
fast_dev_run: True

View File

@ -1,12 +0,0 @@
## Valentini dataset
Clean and noisy parallel speech database. The database was designed to train and test speech enhancement methods that operate at 48kHz. A more detailed description can be found in the papers associated with the database.[official page](https://datashare.ed.ac.uk/handle/10283/2791)
**References**
```BibTex
@misc{
title={Noisy speech database for training speech enhancement algorithms and TTS models},
author={Valentini-Botinhao, Cassia}, year={2017},
doi=https://doi.org/10.7488/ds/2117,
}
```

View File

@ -1,19 +1,19 @@
boto3>=1.24.86
huggingface-hub>=0.10.0
hydra-core>=1.2.0
joblib>=1.2.0
librosa>=0.9.2
mlflow>=1.28.0
# torch>=1.12.1
# torchaudio>=0.12.1
# tqdm>=4.64.1
configparser
# boto3>=1.24.86
# huggingface-hub>=0.10.0
# hydra-core>=1.2.0
# joblib>=1.2.0
# librosa>=0.9.2
# mlflow>=1.29.0
numpy>=1.23.3
pesq==0.0.4
protobuf>=3.19.6
pystoi==0.3.3
pytest-lazy-fixture>=0.6.3
pytorch-lightning>=1.7.7
scikit-learn>=1.1.2
# pesq==0.0.4
# protobuf>=3.19.6
# pystoi==0.3.3
# pytest-lazy-fixture>=0.6.3
# pytorch-lightning>=1.7.7
# scikit-learn>=1.1.2
scipy>=1.9.1
soundfile>=0.11.0
torch>=1.12.1
torch-audiomentations==0.11.0
torchaudio>=0.12.1
tqdm>=4.64.1

View File

@ -3,7 +3,7 @@
# http://setuptools.readthedocs.io/en/latest/setuptools.html#configuring-setup-using-setup-cfg-files
[metadata]
name = mayavoz
name = enhancer
description = Deep learning for speech enhacement
author = Shahul Ess
author-email = shahules786@gmail.com
@ -53,7 +53,7 @@ cli =
[options.entry_points]
console_scripts =
mayavoz-train=mayavoz.cli.train:train
enhancer-train=enhancer.cli.train:train
[test]
# py.test options when running `python setup.py test`
@ -66,7 +66,7 @@ extras = True
# e.g. --cov-report html (or xml) for html/xml output or --junitxml junit.xml
# in order to write a coverage file that can be read by Jenkins.
addopts =
--cov mayavoz --cov-report term-missing
--cov enhancer --cov-report term-missing
--verbose
norecursedirs =
dist
@ -98,7 +98,3 @@ exclude =
build
dist
.eggs
[options.data_files]
. = requirements.txt
_ = version.txt

View File

@ -33,15 +33,15 @@ elif sha != "Unknown":
version += "+" + sha[:7]
print("-- Building version " + version)
version_path = ROOT_DIR / "mayavoz" / "version.py"
version_path = ROOT_DIR / "enhancer" / "version.py"
with open(version_path, "w") as f:
f.write("__version__ = '{}'\n".format(version))
if __name__ == "__main__":
setup(
name="mayavoz",
namespace_packages=["mayavoz"],
name="enhancer",
namespace_packages=["enhancer"],
version=version,
packages=find_packages(),
install_requires=requirements,

13
setup.sh Normal file
View File

@ -0,0 +1,13 @@
#!/bin/bash
set -e
echo "Loading Anaconda Module"
module load anaconda
echo "Creating Virtual Environment"
conda env create -f environment.yml || conda env update -f environment.yml
source activate enhancer
echo "copying files"
# cp /scratch/$USER/TIMIT/.* /deep-transcriber

View File

@ -1,7 +1,7 @@
import pytest
import torch
from mayavoz.loss import mean_absolute_error, mean_squared_error
from enhancer.loss import mean_absolute_error, mean_squared_error
loss_functions = [mean_absolute_error(), mean_squared_error()]

Some files were not shown because too many files have changed in this diff Show More