Compare commits

..

187 Commits

Author SHA1 Message Date
Shahul ES 7133670252
Merge pull request #46 from izam-mohammed/main
Updated conv.py
2023-02-08 16:40:35 +05:30
Izam Mohammed 40031ab084
updated conv.py with changing imag variable 2023-01-24 07:12:45 +05:30
Izam Mohammed 379800d3f6
Merge branch 'shahules786:main' into main 2023-01-24 06:57:04 +05:30
Shahul ES f21fa24f0e
Merge pull request #43 from izam-mohammed/izam-dev-1
Corrected an error in CONTRIBUTING.md file
2023-01-11 23:03:27 +05:30
Izam Mohammed afa89749ad
Merge pull request #1 from izam-mohammed/izam-dev-1
Corrected an error in CONTRIBUTING.md file
2023-01-11 12:52:13 +05:30
Izam Mohammed e6fb143c8f
Corrected an error in CONTRIBUTING.md file 2023-01-11 12:51:32 +05:30
Shahul ES cd7c008d34
update Readme 2022-12-19 16:15:40 +05:30
Shahul ES 287df5bff4
Merge pull request #35 from shahules786/dev
add contribution guidelines
2022-12-07 16:21:01 +05:30
shahules786 b56cdf877a add contribution guidelines 2022-12-07 16:14:30 +05:30
Shahul ES 915574bd30
Merge pull request #31 from shahules786/dev
update readme
2022-12-02 12:48:37 +05:30
shahules786 c0cdb9e6e9 update readme 2022-12-02 12:33:28 +05:30
Shahul ES d57ef2c10a
Merge pull request #30 from shahules786/dev
Update documentations
2022-12-01 10:24:38 +05:30
shahules786 0faa06027f overlap-add 2022-12-01 10:16:10 +05:30
shahules786 c88a87e109 readme 2022-12-01 10:15:39 +05:30
Shahul ES fe82b398ee
rename owner 2022-12-01 09:37:43 +05:30
Shahul ES a47b93b699
Merge pull request #28 from shahules786/dev
Update Readme
2022-11-24 16:18:45 +05:30
shahules786 763ea60a52 Merge branch 'dev' of https://github.com/shahules786/enhancer into dev 2022-11-24 15:57:19 +05:30
shahules786 0bca3f9949 test pretrained 2022-11-24 15:56:42 +05:30
Shahul ES 31ab30be04
Update README.md 2022-11-24 15:51:18 +05:30
Shahul ES dd0b060e09
Update ci.yaml 2022-11-24 15:41:09 +05:30
Shahul ES 1d2c5eee55
Update Readme 2022-11-24 15:38:16 +05:30
Shahul ES f2111321bf
Merge pull request #27 from shahules786/dev
Rename dataset
2022-11-24 12:30:23 +05:30
shahules786 25139d7d3f add MS-SNSD recipes 2022-11-24 12:15:19 +05:30
shahules786 b343ea3610 rmv cli 2022-11-24 11:57:47 +05:30
shahules786 249c535921 rmv cli 2022-11-24 11:57:04 +05:30
shahules786 2de2c715ed rename dataset 2022-11-24 11:54:27 +05:30
shahules786 612c022d24 tests 2022-11-24 11:54:09 +05:30
shahules786 8b3bc67529 readme 2022-11-24 11:53:55 +05:30
shahules786 9187a940e7 recipes 2022-11-24 11:10:50 +05:30
shahules786 18c95cf219 cli 2022-11-24 11:10:29 +05:30
shahules786 502cad0984 notebooks 2022-11-24 11:10:05 +05:30
Shahul ES dd27de7467
Update .gitattributes 2022-11-23 19:19:43 +05:30
Shahul ES d8d61a231b
Merge pull request #26 from shahules786/dev
Testpypi
2022-11-23 19:18:28 +05:30
shahules786 80320bbf92 downgrade mlflow 2022-11-23 17:44:28 +05:30
shahules786 ceb69a09c3 gitattr 2022-11-23 17:32:13 +05:30
shahules786 60b654a065 update readme 2022-11-23 17:27:43 +05:30
shahules786 22a1f27e63 Merge branch 'main' of https://github.com/shahules786/enhancer into dev 2022-11-23 17:10:51 +05:30
shahules786 65f1924593 setup 2022-11-23 17:10:20 +05:30
shahules786 9525d2491f include files 2022-11-23 17:09:49 +05:30
Shahul ES f94bd22eb6
Merge pull request #25 from shahules786/dev
dev install
2022-11-21 22:04:25 +05:30
shahules786 f1fe1a803a notebooks 2022-11-21 21:43:28 +05:30
Shahul ES 386931d09b
Update README.md 2022-11-15 22:06:48 +05:30
shahules786 9927542713 notebooks 2022-11-15 22:05:39 +05:30
Shahul ES da85de13ad
Merge pull request #24 from shahules786/dev
Minor improvements/bug fixes
2022-11-15 22:03:45 +05:30
shahules786 9ee809a047 rename to train 2022-11-15 21:51:45 +05:30
shahules786 7afe928ee1 relative imports 2022-11-15 21:51:28 +05:30
shahules786 434b44ddc9 minor fixes 2022-11-15 21:51:06 +05:30
shahules786 191c6a7499 add warnings 2022-11-15 21:50:24 +05:30
shahules786 b99ef95719 train config 2022-11-15 21:45:07 +05:30
shahules786 2bfca78caa fix duration 2022-11-15 21:42:02 +05:30
shahules786 003bab91f9 tests 2022-11-15 21:39:47 +05:30
shahules786 d9b817f650 gitignore 2022-11-15 21:39:35 +05:30
shahules786 90fbfbce73 examples 2022-11-15 21:39:18 +05:30
Shahul ES 7c7db84c39
update readme 2022-11-15 15:11:23 +05:30
Shahul ES a4f0fda6a5
Merge pull request #23 from shahules786/dev
rename package
2022-11-15 15:08:06 +05:30
shahules786 8bc63becce rename dataset 2022-11-15 14:33:27 +05:30
shahules786 bfd53937c2 rename to mayamodel 2022-11-15 14:29:04 +05:30
shahules786 ba63c54399 ci-cd 2022-11-14 16:31:51 +05:30
shahules786 12cde1b0ab change save name 2022-11-14 16:30:14 +05:30
shahules786 f8a44f823a fix typo 2022-11-14 16:19:57 +05:30
shahules786 7838e744a9 rename package 2022-11-14 11:37:26 +05:30
shahules786 1abc450ef8 Merge branch 'dev' of https://github.com/shahules786/enhancer into dev 2022-11-14 10:50:05 +05:30
shahules786 4a2865ff03 negate si-snr 2022-11-14 10:48:31 +05:30
Shahul ES 0e664ed371
Update readme 2022-11-10 19:36:02 +05:30
Shahul ES cb6f9c20ed
update readme 2022-11-10 19:30:59 +05:30
Shahul ES 8e4c12b98d
update readme 2022-11-10 17:29:01 +05:30
Shahul ES a0e38c5e5c
Merge pull request #22 from shahules786/dev
Dev
2022-11-10 17:27:31 +05:30
Shahul ES ebba5952e5
Merge pull request #20 from shahules786/dev-recipe
recipes and tutorials
2022-11-10 17:09:27 +05:30
shahules786 69c7a0100c recipes 2022-11-10 16:54:53 +05:30
shahules786 470ec74bcb add license 2022-11-10 16:27:55 +05:30
shahules786 a2e083b315 add cache 2022-11-10 16:01:06 +05:30
shahules786 252d380acc rmv badge: 2022-11-10 13:58:39 +05:30
shahules786 4eff036c1c add cli tutorials 2022-11-10 12:03:59 +05:30
shahules786 d2a7e3c730 add badges 2022-11-10 11:15:32 +05:30
shahules786 3b8551640f add sheilds 2022-11-10 10:52:36 +05:30
Shahul ES 1d366d6096
Merge pull request #21 from shahules786/dev
Merge changes to main
2022-11-10 10:43:12 +05:30
shahules786 d90db16bce remove hawk files 2022-11-10 10:35:50 +05:30
shahules786 e941235ec0 mv coeff to device 2022-11-10 10:34:48 +05:30
shahules786 27ddf0bec9 advanced tutorial 2022-11-09 13:32:27 +05:30
shahules786 bc13fc03bf readme 2022-11-08 17:09:56 +05:30
shahules786 7a502671e2 check github copy 2022-11-08 17:01:27 +05:30
shahules786 6384915e17 recipes 2022-11-08 16:48:20 +05:30
shahules786 94ab778c0b update links 2022-11-08 13:00:11 +05:30
shahules786 ef06786d8c getting started 2022-11-08 12:45:09 +05:30
shahules786 e0fbf55dca add recipes table 2022-11-07 20:03:21 +05:30
shahules786 ed210a8c60 mv coeff to input device 2022-11-07 16:00:47 +05:30
shahules786 3cbd0ba7cc mv coeff to device 2022-11-07 13:00:34 +05:30
shahules786 82308750dc add direction si-snr 2022-11-07 12:28:25 +05:30
shahules786 234e1a89de Merge branch 'dev' of https://github.com/shahules786/enhancer into dev 2022-11-07 12:01:36 +05:30
shahules786 47cfc84295 add si-snr 2022-11-07 12:01:20 +05:30
Shahul ES 4adb388a34
Merge pull request #18 from shahules786/dev-dccrn
DCCRNET implementation
2022-11-07 11:38:57 +05:30
shahules786 6626ad75e7 fix tests 2022-11-07 11:34:21 +05:30
shahules786 6573bc4c5e ensure num_channels 2022-11-07 11:33:00 +05:30
shahules786 77699ce7f9 fix tests 2022-11-07 11:15:30 +05:30
shahules786 1a4102cc53 dccrn 2022-11-07 10:53:08 +05:30
shahules786 40e8722014 fix o/p shape 2022-11-07 10:52:35 +05:30
shahules786 15c1d1ad94 fix batchnorm eval() mode 2022-11-07 10:52:11 +05:30
shahules786 511d2141d4 DCCRN implementation 2022-11-07 10:26:51 +05:30
shahules786 fc33bd83b6 transforms test 2022-11-07 10:25:54 +05:30
shahules786 c1d5e56ec0 transforms test 2022-11-07 10:25:27 +05:30
shahules786 d7f3847917 add complex-cat 2022-11-07 10:24:47 +05:30
shahules786 60fc4607d0 init projection_size as None 2022-11-07 10:24:18 +05:30
shahules786 c21f05e307 fix padding & init 2022-11-07 10:23:46 +05:30
shahules786 70d17f6586 add imports 2022-11-05 16:59:04 +05:30
shahules786 2e4a3cd254 add imports 2022-11-05 16:58:50 +05:30
shahules786 4388820921 add imports 2022-11-05 16:58:16 +05:30
shahules786 e2e413f8f3 rmv 2022-11-05 16:55:23 +05:30
shahules786 a3b20d5ddb fix imports 2022-11-05 16:40:19 +05:30
shahules786 b98599f21e rename module 2022-11-05 16:36:27 +05:30
shahules786 981763207a init dccrn 2022-11-05 16:35:57 +05:30
shahules786 d3e052c5f3 complex batchnorm 2d test 2022-11-03 16:06:14 +05:30
shahules786 da1b986d31 complex batchnorm 2d 2022-11-03 16:05:55 +05:30
shahules786 e932dc6c75 batchnorm 2022-11-03 11:37:58 +05:30
Shahul ES a082474034
Merge pull request #19 from shahules786/dev-loss
Support custom loss functions
2022-11-03 09:53:25 +05:30
shahules786 b857754626 add documentation 2022-11-02 18:00:05 +05:30
shahules786 7e298b811f rmv typo 2022-11-02 17:57:44 +05:30
shahules786 2f85f48d69 add support for custom loss 2022-11-02 17:57:30 +05:30
shahules786 b1144e7b81 tests complexnn 2022-11-01 10:35:49 +05:30
shahules786 0b50a573e8 complex lstm 2022-11-01 10:35:30 +05:30
shahules786 7abd266ab2 test complexnn 2022-10-31 11:43:50 +05:30
shahules786 26cccc6772 complex tranposed conv 2022-10-31 11:43:32 +05:30
shahules786 6f6e7f7ad8 init 2022-10-29 13:20:04 +05:30
shahules786 cf1e5c07a9 test transforms 2022-10-29 11:35:35 +05:30
shahules786 c18a85b5c8 stft 2022-10-29 11:34:51 +05:30
shahules786 7f3dcf39c5 rmv padding_mode 2022-10-29 10:39:32 +05:30
shahules786 6f1acf0423 Revert "add random sampler"
This reverts commit aa52d1ed93.
2022-10-29 10:33:59 +05:30
shahules786 ad208ca0a0 add padding 2022-10-29 09:41:56 +05:30
shahules786 aa52d1ed93 add random sampler 2022-10-28 13:06:49 +05:30
shahules786 fb2543e81e fix typo 2022-10-27 16:18:31 +05:30
Shahul ES a1445b0a95
Merge pull request #17 from shahules786/dev-datafix
foolproof iteration
2022-10-27 15:21:54 +05:30
shahules786 e1963ff001 split validation criterion 2022-10-27 15:19:02 +05:30
shahules786 085a85d9ae fourier transforms using cnn 2022-10-27 11:32:50 +05:30
shahules786 47bbee2c32 rmv augmentations 2022-10-26 21:47:29 +05:30
shahules786 c51dea6885 revert to torchmetric pesq 2022-10-26 21:46:19 +05:30
shahules786 1edc10e9f5 time shift 2022-10-26 12:01:19 +05:30
shahules786 ee40259a8d fix iterator 2022-10-26 12:00:57 +05:30
shahules786 f07c8741ba fix resampling 2022-10-26 11:59:58 +05:30
shahules786 24a06ba9be rename loss 2022-10-26 10:27:23 +05:30
shahules786 04782ba6e9 fix optimizer scheduler 2022-10-26 10:26:27 +05:30
shahules786 23da02d47d dccrn 2022-10-26 09:36:55 +05:30
shahules786 485a74fc4e convt stft 2022-10-26 09:36:28 +05:30
shahules786 58de41598e change matrix 2022-10-25 15:10:36 +05:30
shahules786 4acad6ede8 fix augmentation 2022-10-25 15:10:13 +05:30
shahules786 b070613b64 config" 2022-10-25 12:48:37 +05:30
shahules786 d1bafb3dc6 add augmentations 2022-10-25 12:43:54 +05:30
shahules786 cdffe5c485 DEMUCS w/o stride 2022-10-25 10:57:07 +05:30
shahules786 03d0dc57fc add torch audiomentations 2022-10-24 22:13:19 +05:30
shahules786 542ab23d8a add torch-augmentations 2022-10-24 21:50:30 +05:30
shahules786 5dc5fd8f90 default stride None 2022-10-24 21:15:25 +05:30
shahules786 75ebef2462 Waveunet w/o stride 2022-10-24 10:01:54 +05:30
shahules786 101ee563cb decrease precision 2022-10-23 19:30:46 +05:30
shahules786 97b4a61d9c half BS 2022-10-23 19:07:53 +05:30
shahules786 460366bd8b min conf acc ablation study 2022-10-23 17:15:17 +05:30
shahules786 3128fed71e params 2022-10-23 12:38:20 +05:30
shahules786 fc41de1530 VCTK + DEMUCS 2022-10-23 12:36:43 +05:30
shahules786 ea5c78798a model assigment' 2022-10-23 12:33:38 +05:30
shahules786 40e2d6e0b0 change to mapstyle 2022-10-23 12:32:58 +05:30
shahules786 02192e5567 to cpu 2022-10-22 12:00:30 +05:30
shahules786 6eb905c1bb rmv print statements 2022-10-22 12:00:18 +05:30
shahules786 9f658424a6 rmv slicing 2022-10-22 11:18:32 +05:30
shahules786 5f1ed8c725 iterable dataset 2022-10-22 11:17:37 +05:30
shahules786 05e40f84b6 replace pesq 2022-10-22 11:17:22 +05:30
shahules786 9b15534812 print len 2022-10-22 11:05:39 +05:30
shahules786 6314d210c3 debug
git commit -m debug
'
2022-10-22 11:05:19 +05:30
shahules786 7fa54fc414 debug 2022-10-22 10:30:27 +05:30
shahules786 c4a27686da debug 2022-10-22 09:57:27 +05:30
shahules786 8457e1cbe2 debug num_workers 2022-10-21 23:23:37 +05:30
shahules786 cd9ffc1a68 fix randomization 2022-10-21 23:22:56 +05:30
shahules786 a75f3c32a3 num_workers 2022-10-21 19:23:59 +05:30
shahules786 a7fb27bb0f debug 2022-10-21 17:17:02 +05:30
shahules786 20c12556ff debug 2022-10-21 16:25:24 +05:30
shahules786 9c7a650130 div by batchsize in __len__ 2022-10-21 11:37:26 +05:30
shahules786 5d7ea582c9 debug 2022-10-21 11:18:24 +05:30
shahules786 0d3bfd3412 debug 2022-10-21 11:13:17 +05:30
shahules786 178a4523ef fix worker init fn 2022-10-21 09:48:28 +05:30
shahules786 ba10719520 add arg 2022-10-20 21:03:38 +05:30
shahules786 f2561d7cf7 config 2022-10-20 09:53:27 +05:30
shahules786 c5824cb34a gitignore 2022-10-20 09:53:06 +05:30
shahules786 a6a2e4a4ae add batch info 2022-10-20 09:50:04 +05:30
shahules786 2ad49faa67 debug iterative dataset 2022-10-20 09:49:27 +05:30
shahules786 e4f13946e8 fix demucs output 2022-10-19 12:38:29 +05:30
shahules786 edb7f020f7 stride waveform 2022-10-18 15:23:07 +05:30
shahules786 415ed8e3d0 normalize input 2022-10-18 15:22:34 +05:30
shahules786 e118c31f18 specify valid size in mins 2022-10-17 13:10:22 +05:30
shahules786 dab7e73d53 DNS 2020 2022-10-16 11:14:13 +05:30
shahules786 d99fd0eb61 fix duration estimation 2022-10-16 11:13:44 +05:30
shahules786 0910d9ac84 fix dns loader 2022-10-15 12:23:51 +05:30
107 changed files with 3584 additions and 782 deletions

View File

@ -1,5 +1,5 @@
[flake8] [flake8]
per-file-ignores = __init__.py:F401 per-file-ignores = "mayavoz/model/__init__.py:F401"
ignore = E203, E266, E501, W503 ignore = E203, E266, E501, W503
# line length is intentionally set to 80 here because black uses Bugbear # line length is intentionally set to 80 here because black uses Bugbear
# See https://github.com/psf/black/blob/master/README.md#line-length for more details # See https://github.com/psf/black/blob/master/README.md#line-length for more details

1
.gitattributes vendored Normal file
View File

@ -0,0 +1 @@
notebooks/** linguist-vendored

View File

@ -1,13 +1,13 @@
# This workflow will install Python dependencies, run tests and lint with a variety of Python versions # This workflow will install Python dependencies, run tests and lint with a variety of Python versions
# For more information see: https://help.github.com/actions/language-and-framework-guides/using-python-with-github-actions # For more information see: https://help.github.com/actions/language-and-framework-guides/using-python-with-github-actions
name: Enhancer name: mayavoz
on: on:
push: push:
branches: [ dev ] branches: [ main ]
pull_request: pull_request:
branches: [ dev ] branches: [ main ]
jobs: jobs:
build: build:
runs-on: ubuntu-latest runs-on: ubuntu-latest
@ -40,12 +40,12 @@ jobs:
sudo apt-get install libsndfile1 sudo apt-get install libsndfile1
pip install -r requirements.txt pip install -r requirements.txt
pip install black pytest-cov pip install black pytest-cov
- name: Install enhancer - name: Install mayavoz
run: | run: |
pip install -e .[dev,testing] pip install -e .[dev,testing]
- name: Run black - name: Run black
run: run:
black --check . --exclude enhancer/version.py black --check . --exclude mayavoz/version.py
- name: Test with pytest - name: Test with pytest
run: run:
pytest tests --cov=enhancer/ pytest tests --cov=mayavoz/

5
.gitignore vendored
View File

@ -1,5 +1,10 @@
#local #local
cleaned_my_voice.wav
lightning_logs/
my_voice.wav
pretrained/
*.ckpt *.ckpt
*_local.yaml
cli/train_config/dataset/Vctk_local.yaml cli/train_config/dataset/Vctk_local.yaml
.DS_Store .DS_Store
outputs/ outputs/

View File

@ -23,6 +23,7 @@ repos:
hooks: hooks:
- id: flake8 - id: flake8
args: ['--ignore=E203,E501,F811,E712,W503'] args: ['--ignore=E203,E501,F811,E712,W503']
exclude: __init__.py
# Formatting, Whitespace, etc # Formatting, Whitespace, etc
- repo: https://github.com/pre-commit/pre-commit-hooks - repo: https://github.com/pre-commit/pre-commit-hooks
@ -40,5 +41,4 @@ repos:
- id: end-of-file-fixer - id: end-of-file-fixer
- id: requirements-txt-fixer - id: requirements-txt-fixer
- id: mixed-line-ending - id: mixed-line-ending
exclude: noisyspeech_synthesizer.cfg
args: ['--fix=no'] args: ['--fix=no']

46
CONTRIBUTING.md Normal file
View File

@ -0,0 +1,46 @@
# Contributing
Hi there 👋
If you're reading this I hope that you're looking forward to adding value to Mayavoz. This document will help you to get started with your journey.
## How to get your code in Mayavoz
1. We use git and GitHub.
2. Fork the mayavoz repository (https://github.com/shahules786/mayavoz) on GitHub under your own account. (This creates a copy of mayavoz under your account, and GitHub knows where it came from, and we typically call this “upstream”.)
3. Clone your own mayavoz repository. git clone https://github.com/ <your-account> /mayavoz (This downloads the git repository to your machine, git knows where it came from, and calls it “origin”.)
4. Create a branch for each specific feature you are developing. git checkout -b your-branch-name
5. Make + commit changes. git add files-you-changed ... git commit -m "Short message about what you did"
6. Push the branch to your GitHub repository. git push origin your-branch-name
7. Navigate to GitHub, and create a pull request from your branch to the upstream repository mayavoz/mayavoz, to the “develop” branch.
8. The Pull Request (PR) appears on the upstream repository. Discuss your contribution there. If you push more changes to your branch on GitHub (on your repository), they are added to the PR.
9. When the reviewer is satisfied that the code improves repository quality, they can merge.
Note that CI tests will be run when you create a PR. If you want to be sure that your code will not fail these tests, we have set up pre-commit hooks that you can install.
**If you're worried about things not being perfect with your code, we will work togethor and make it perfect. So, make your move!**
## Formating
We use [black](https://black.readthedocs.io/en/stable/) and [flake8](https://flake8.pycqa.org/en/latest/) for code formating. Please ensure that you use the same before submitting the PR.
## Testing
We adopt unit testing using [pytest](https://docs.pytest.org/en/latest/contents.html)
Please make sure that adding your new component does not decrease test coverage.
## Other tools
The use of [per-commit](https://pre-commit.com/) is recommended to ensure different requirements such as code formating, etc.
## How to start contributing to Mayavoz?
1. Checkout issues marked as `good first issue`, let us know you're interested in working on some issue by commenting under it.
2. For others, I would suggest you to explore mayavoz. One way to do is to use it to train your own model. This was you might end by finding a new unreported bug or getting an idea to improve Mayavoz.

20
LICENSE Normal file
View File

@ -0,0 +1,20 @@
MIT License
Copyright (c) 2022 Shahul Es
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

4
MANIFEST.in Normal file
View File

@ -0,0 +1,4 @@
recursive-include mayavoz *.py
recursive-include mayavoz *.yaml
global-exclude *.pyc
global-exclude __pycache__

View File

@ -2,24 +2,52 @@
<img src="https://user-images.githubusercontent.com/25312635/195514652-e4526cd1-1177-48e9-a80d-c8bfdb95d35f.png" /> <img src="https://user-images.githubusercontent.com/25312635/195514652-e4526cd1-1177-48e9-a80d-c8bfdb95d35f.png" />
</p> </p>
mayavoz is a Pytorch-based opensource toolkit for speech enhancement. It is designed to save time for audio researchers. Is provides easy to use pretrained audio enhancement models and facilitates highly customisable model training. ![GitHub Workflow Status](https://img.shields.io/github/actions/workflow/status/shahules786/mayavoz/ci.yaml?branch=main)
![GitHub](https://img.shields.io/github/license/shahules786/enhancer)
![GitHub issues](https://img.shields.io/github/issues/shahules786/enhancer?logo=GitHub)
![GitHub Repo stars](https://img.shields.io/github/stars/shahules786/enhancer?style=social)
| **[Quick Start]()** | **[Installation]()** | **[Tutorials]()** | **[Available Recipes]()** mayavoz is a Pytorch-based opensource toolkit for speech enhancement. It is designed to save time for audio practioners & researchers. It provides easy to use pretrained speech enhancement models and facilitates highly customisable model training.
| **[Quick Start](#quick-start-fire)** | **[Installation](#installation)** | **[Tutorials](https://github.com/shahules786/enhancer/tree/main/notebooks)** | **[Available Recipes](#recipes)** | **[Demo](#demo)**
## Key features :key: ## Key features :key:
* Various pretrained models nicely integrated with huggingface :hugs: that users can select and use without any hastle. * Various pretrained models nicely integrated with [huggingface hub](https://huggingface.co/docs/hub/index) :hugs: that users can select and use without any hastle.
* :package: Ability to train and validation your own custom speech enhancement models with just under 10 lines of code! * :package: Ability to train and validate your own custom speech enhancement models with just under 10 lines of code!
* :magic_wand: A command line tool that facilitates training of highly customisable speech enhacement models from the terminal itself! * :magic_wand: A command line tool that facilitates training of highly customisable speech enhacement models from the terminal itself!
* :zap: Supports multi-gpu training integrated with Pytorch Lightning. * :zap: Supports multi-gpu training integrated with [Pytorch Lightning](https://pytorchlightning.ai/).
* :shield: data augmentations integrated using [torch-augmentations](https://github.com/asteroid-team/torch-audiomentations)
## Demo
Noisy speech followed by enhanced version.
https://user-images.githubusercontent.com/25312635/203756185-737557f4-6e21-4146-aa2c-95da69d0de4c.mp4
## Quick Start :fire: ## Quick Start :fire:
``` python ``` python
from mayavoz import Mayamodel from mayavoz.models import Mayamodel
model = Mayamodel.from_pretrained("mayavoz/waveunet") model = Mayamodel.from_pretrained("shahules786/mayavoz-waveunet-valentini-28spk")
model("noisy_audio.wav") model.enhance("noisy_audio.wav")
``` ```
## Recipes
| Model | Dataset | STOI | PESQ | URL |
| :---: | :---: | :---: | :---: | :---: |
| WaveUnet | Valentini-28spk | 0.836 | 2.78 | shahules786/mayavoz-waveunet-valentini-28spk |
| Demucs | Valentini-28spk | 0.961 | 2.56 | shahules786/mayavoz-demucs-valentini-28spk |
| DCCRN | Valentini-28spk | 0.724 | 2.55 | shahules786/mayavoz-dccrn-valentini-28spk |
| Demucs | MS-SNSD-20hrs | 0.56 | 1.26 | shahules786/mayavoz-demucs-ms-snsd-20 |
Test scores are based on respective test set associated with train dataset.
**See [tutorials](/notebooks/) to train your custom model**
## Installation ## Installation
Only Python 3.8+ is officially supported (though it might work with Python 3.7) Only Python 3.8+ is officially supported (though it might work with Python 3.7)
@ -41,3 +69,10 @@ git clone url
cd mayavoz cd mayavoz
pip install -e . pip install -e .
``` ```
## Support
For commercial enquiries and scientific consulting, please [contact me](https://shahules786.github.io/).
### Acknowledgements
Sincere gratitude to [AMPLYFI](https://amplyfi.com/) for supporting this project.

View File

@ -1,76 +0,0 @@
# -*- coding: utf-8 -*-
"""
Created on Wed Jun 26 15:54:05 2019
@author: chkarada
"""
import os
import numpy as np
import soundfile as sf
# Function to read audio
def audioread(path, norm=True, start=0, stop=None):
path = os.path.abspath(path)
if not os.path.exists(path):
raise ValueError("[{}] does not exist!".format(path))
try:
x, sr = sf.read(path, start=start, stop=stop)
except RuntimeError: # fix for sph pcm-embedded shortened v2
print("WARNING: Audio type not supported")
if len(x.shape) == 1: # mono
if norm:
rms = (x**2).mean() ** 0.5
scalar = 10 ** (-25 / 20) / (rms)
x = x * scalar
return x, sr
else: # multi-channel
x = x.T
x = x.sum(axis=0) / x.shape[0]
if norm:
rms = (x**2).mean() ** 0.5
scalar = 10 ** (-25 / 20) / (rms)
x = x * scalar
return x, sr
# Funtion to write audio
def audiowrite(data, fs, destpath, norm=False):
if norm:
eps = 0.0
rms = (data**2).mean() ** 0.5
scalar = 10 ** (-25 / 10) / (rms + eps)
data = data * scalar
if max(abs(data)) >= 1:
data = data / max(abs(data), eps)
destpath = os.path.abspath(destpath)
destdir = os.path.dirname(destpath)
if not os.path.exists(destdir):
os.makedirs(destdir)
sf.write(destpath, data, fs)
return
# Function to mix clean speech and noise at various SNR levels
def snr_mixer(clean, noise, snr):
# Normalizing to -25 dB FS
rmsclean = (clean**2).mean() ** 0.5
scalarclean = 10 ** (-25 / 20) / rmsclean
clean = clean * scalarclean
rmsclean = (clean**2).mean() ** 0.5
rmsnoise = (noise**2).mean() ** 0.5
scalarnoise = 10 ** (-25 / 20) / rmsnoise
noise = noise * scalarnoise
rmsnoise = (noise**2).mean() ** 0.5
# Set the noise level for a given SNR
noisescalar = np.sqrt(rmsclean / (10 ** (snr / 20)) / rmsnoise)
noisenewlevel = noise * noisescalar
noisyspeech = clean + noisenewlevel
return clean, noisenewlevel, noisyspeech

View File

@ -1,11 +0,0 @@
_target_: enhancer.data.dataset.EnhancerDataset
root_dir : /Users/shahules/Myprojects/enhancer/datasets/vctk_test
name : dns-2020
duration : 1.0
sampling_rate: 8000
batch_size: 32
files:
train_clean : clean_test_wav
test_clean : clean_test_wav
train_noisy : clean_test_wav
test_noisy : clean_test_wav

View File

@ -1,13 +0,0 @@
_target_: enhancer.data.dataset.EnhancerDataset
name : vctk
root_dir : /Users/shahules/Myprojects/enhancer/datasets/vctk
duration : 1.0
sampling_rate: 16000
batch_size: 64
num_workers : 0
files:
train_clean : clean_testset_wav
test_clean : clean_testset_wav
train_noisy : noisy_testset_wav
test_noisy : noisy_testset_wav

View File

@ -1,2 +0,0 @@
experiment_name : shahules/enhancer
run_name : baseline

View File

@ -1 +0,0 @@
from enhancer.data.dataset import EnhancerDataset

View File

@ -1,263 +0,0 @@
import math
import multiprocessing
import os
from typing import Optional
import pytorch_lightning as pl
import torch.nn.functional as F
from sklearn.model_selection import train_test_split
from torch.utils.data import DataLoader, Dataset, IterableDataset
from enhancer.data.fileprocessor import Fileprocessor
from enhancer.utils import check_files
from enhancer.utils.config import Files
from enhancer.utils.io import Audio
from enhancer.utils.random import create_unique_rng
class TrainDataset(IterableDataset):
def __init__(self, dataset):
self.dataset = dataset
def __iter__(self):
return self.dataset.train__iter__()
def __len__(self):
return self.dataset.train__len__()
class ValidDataset(Dataset):
def __init__(self, dataset):
self.dataset = dataset
def __getitem__(self, idx):
return self.dataset.val__getitem__(idx)
def __len__(self):
return self.dataset.val__len__()
class TestDataset(Dataset):
def __init__(self, dataset):
self.dataset = dataset
def __getitem__(self, idx):
return self.dataset.test__getitem__(idx)
def __len__(self):
return self.dataset.test__len__()
class TaskDataset(pl.LightningDataModule):
def __init__(
self,
name: str,
root_dir: str,
files: Files,
valid_size: float = 0.20,
duration: float = 1.0,
sampling_rate: int = 48000,
matching_function=None,
batch_size=32,
num_workers: Optional[int] = None,
):
super().__init__()
self.name = name
self.files, self.root_dir = check_files(root_dir, files)
self.duration = duration
self.sampling_rate = sampling_rate
self.batch_size = batch_size
self.matching_function = matching_function
self._validation = []
if num_workers is None:
num_workers = multiprocessing.cpu_count() // 2
self.num_workers = num_workers
if valid_size > 0.0:
self.valid_size = valid_size
else:
raise ValueError("valid_size must be greater than 0")
def setup(self, stage: Optional[str] = None):
"""
prepare train/validation/test data splits
"""
if stage in ("fit", None):
train_clean = os.path.join(self.root_dir, self.files.train_clean)
train_noisy = os.path.join(self.root_dir, self.files.train_noisy)
fp = Fileprocessor.from_name(
self.name, train_clean, train_noisy, self.matching_function
)
train_data = fp.prepare_matching_dict()
self.train_data, self.val_data = train_test_split(
train_data, test_size=0.20, shuffle=True, random_state=42
)
self._validation = self.prepare_mapstype(self.val_data)
test_clean = os.path.join(self.root_dir, self.files.test_clean)
test_noisy = os.path.join(self.root_dir, self.files.test_noisy)
fp = Fileprocessor.from_name(
self.name, test_clean, test_noisy, self.matching_function
)
test_data = fp.prepare_matching_dict()
self._test = self.prepare_mapstype(test_data)
def prepare_mapstype(self, data):
metadata = []
for item in data:
clean, noisy, total_dur = item.values()
if total_dur < self.duration:
continue
num_segments = round(total_dur / self.duration)
for index in range(num_segments):
start_time = index * self.duration
metadata.append(({"clean": clean, "noisy": noisy}, start_time))
return metadata
def train_dataloader(self):
return DataLoader(
TrainDataset(self),
batch_size=self.batch_size,
num_workers=self.num_workers,
)
def val_dataloader(self):
return DataLoader(
ValidDataset(self),
batch_size=self.batch_size,
num_workers=self.num_workers,
)
def test_dataloader(self):
return DataLoader(
TestDataset(self),
batch_size=self.batch_size,
num_workers=self.num_workers,
)
class EnhancerDataset(TaskDataset):
"""
Dataset object for creating clean-noisy speech enhancement datasets
paramters:
name : str
name of the dataset
root_dir : str
root directory of the dataset containing clean/noisy folders
files : Files
dataclass containing train_clean, train_noisy, test_clean, test_noisy
folder names (refer enhancer.utils.Files dataclass)
duration : float
expected audio duration of single audio sample for training
sampling_rate : int
desired sampling rate
batch_size : int
batch size of each batch
num_workers : int
num workers to be used while training
matching_function : str
maching functions - (one_to_one,one_to_many). Default set to None.
use one_to_one mapping for datasets with one noisy file for each clean file
use one_to_many mapping for multiple noisy files for each clean file
"""
def __init__(
self,
name: str,
root_dir: str,
files: Files,
valid_size=0.2,
duration=1.0,
sampling_rate=48000,
matching_function=None,
batch_size=32,
num_workers: Optional[int] = None,
):
super().__init__(
name=name,
root_dir=root_dir,
files=files,
valid_size=valid_size,
sampling_rate=sampling_rate,
duration=duration,
matching_function=matching_function,
batch_size=batch_size,
num_workers=num_workers,
)
self.sampling_rate = sampling_rate
self.files = files
self.duration = max(1.0, duration)
self.audio = Audio(self.sampling_rate, mono=True, return_tensor=True)
def setup(self, stage: Optional[str] = None):
super().setup(stage=stage)
def train__iter__(self):
rng = create_unique_rng(self.model.current_epoch)
while True:
file_dict, *_ = rng.choices(
self.train_data,
k=1,
weights=[file["duration"] for file in self.train_data],
)
file_duration = file_dict["duration"]
start_time = round(rng.uniform(0, file_duration - self.duration), 2)
data = self.prepare_segment(file_dict, start_time)
yield data
def val__getitem__(self, idx):
return self.prepare_segment(*self._validation[idx])
def test__getitem__(self, idx):
return self.prepare_segment(*self._test[idx])
def prepare_segment(self, file_dict: dict, start_time: float):
clean_segment = self.audio(
file_dict["clean"], offset=start_time, duration=self.duration
)
noisy_segment = self.audio(
file_dict["noisy"], offset=start_time, duration=self.duration
)
clean_segment = F.pad(
clean_segment,
(
0,
int(
self.duration * self.sampling_rate - clean_segment.shape[-1]
),
),
)
noisy_segment = F.pad(
noisy_segment,
(
0,
int(
self.duration * self.sampling_rate - noisy_segment.shape[-1]
),
),
)
return {"clean": clean_segment, "noisy": noisy_segment}
def train__len__(self):
return math.ceil(
sum([file["duration"] for file in self.train_data]) / self.duration
)
def val__len__(self):
return len(self._validation)
def test__len__(self):
return len(self._test)

View File

@ -1,3 +0,0 @@
from enhancer.models.demucs import Demucs
from enhancer.models.model import Model
from enhancer.models.waveunet import WaveUnet

View File

@ -1,3 +0,0 @@
from enhancer.utils.config import Files
from enhancer.utils.io import Audio
from enhancer.utils.utils import check_files

View File

@ -1,4 +1,4 @@
name: enhancer name: mayavoz
dependencies: dependencies:
- pip=21.0.1 - pip=21.0.1

View File

@ -1,52 +0,0 @@
#!/bin/bash
set -e
echo '----------------------------------------------------'
echo ' SLURM_CLUSTER_NAME = '$SLURM_CLUSTER_NAME
echo ' SLURMD_NODENAME = '$SLURMD_NODENAME
echo ' SLURM_JOBID = '$SLURM_JOBID
echo ' SLURM_JOB_USER = '$SLURM_JOB_USER
echo ' SLURM_PARTITION = '$SLURM_JOB_PARTITION
echo ' SLURM_JOB_ACCOUNT = '$SLURM_JOB_ACCOUNT
echo '----------------------------------------------------'
#TeamCity Output
cat << EOF
##teamcity[buildNumber '$SLURM_JOBID']
EOF
echo "Load HPC modules"
module load anaconda
echo "Activate Environment"
source activate enhancer
export TRANSFORMERS_OFFLINE=True
export PYTHONPATH=${PYTHONPATH}:/scratch/c.sistc3/enhancer
export HYDRA_FULL_ERROR=1
echo $PYTHONPATH
source ~/mlflow_settings.sh
echo "Making temp dir"
mkdir temp
pwd
# echo "files"
# rm -rf /scratch/c.sistc3/MS-SNSD/DNS30/CleanSpeech_training
# rm -rf /scratch/c.sistc3/MS-SNSD/DNS30/NoisySpeech_training
# rm -rf /scratch/c.sistc3/MS-SNSD/DNS30/NoisySpeech_testing
# rm -rf /scratch/c.sistc3/MS-SNSD/DNS30/CleanSpeech_testing
# cp -r /scratch/c.sistc3/MS-SNSD/DNS30/NoisySpeech_testing /scratch/c.sistc3/MS-SNSD/DNS15/
# cp -r /scratch/c.sistc3/MS-SNSD/DNS30/CleanSpeech_testing /scratch/c.sistc3/MS-SNSD/DNS15/
# rm -rf /scratch/c.sistc3/MS-SNSD/DNS20
# mkdir /scratch/c.sistc3/MS-SNSD/DNS20
python noisyspeech_synthesizer.py
mv ./CleanSpeech_testing/ /scratch/c.sistc3/MS-SNSD/DNS20
mv ./NoisySpeech_testing/ /scratch/c.sistc3/MS-SNSD/DNS20
ls /scratch/c.sistc3/MS-SNSD/DNS20
#python enhancer/cli/train.py

View File

@ -1 +1,2 @@
__import__("pkg_resources").declare_namespace(__name__) __import__("pkg_resources").declare_namespace(__name__)
from mayavoz.models import Mayamodel

120
mayavoz/cli/train.py Normal file
View File

@ -0,0 +1,120 @@
import os
from types import MethodType
import hydra
from hydra.utils import instantiate
from omegaconf import DictConfig, OmegaConf
from pytorch_lightning.callbacks import (
EarlyStopping,
LearningRateMonitor,
ModelCheckpoint,
)
from pytorch_lightning.loggers import MLFlowLogger
from torch.optim.lr_scheduler import ReduceLROnPlateau
# from torch_audiomentations import Compose, Shift
os.environ["HYDRA_FULL_ERROR"] = "1"
JOB_ID = os.environ.get("SLURM_JOBID", "0")
@hydra.main(config_path="train_config", config_name="config")
def train(config: DictConfig):
OmegaConf.save(config, "config.yaml")
callbacks = []
logger = MLFlowLogger(
experiment_name=config.mlflow.experiment_name,
run_name=config.mlflow.run_name,
tags={"JOB_ID": JOB_ID},
)
parameters = config.hyperparameters
# apply_augmentations = Compose(
# [
# Shift(min_shift=0.5, max_shift=1.0, shift_unit="seconds", p=0.5),
# ]
# )
dataset = instantiate(config.dataset, augmentations=None)
model = instantiate(
config.model,
dataset=dataset,
lr=parameters.get("lr"),
loss=parameters.get("loss"),
metric=parameters.get("metric"),
)
direction = model.valid_monitor
checkpoint = ModelCheckpoint(
dirpath="./model",
filename=f"model_{JOB_ID}",
monitor="valid_loss",
verbose=False,
mode=direction,
every_n_epochs=1,
)
callbacks.append(checkpoint)
callbacks.append(LearningRateMonitor(logging_interval="epoch"))
if parameters.get("Early_stop", False):
early_stopping = EarlyStopping(
monitor="val_loss",
mode=direction,
min_delta=0.0,
patience=parameters.get("EarlyStopping_patience", 10),
strict=True,
verbose=False,
)
callbacks.append(early_stopping)
def configure_optimizers(self):
optimizer = instantiate(
config.optimizer,
lr=parameters.get("lr"),
params=self.parameters(),
)
scheduler = ReduceLROnPlateau(
optimizer=optimizer,
mode=direction,
factor=parameters.get("ReduceLr_factor", 0.1),
verbose=True,
min_lr=parameters.get("min_lr", 1e-6),
patience=parameters.get("ReduceLr_patience", 3),
)
return {
"optimizer": optimizer,
"lr_scheduler": scheduler,
"monitor": f'valid_{parameters.get("ReduceLr_monitor", "loss")}',
}
model.configure_optimizers = MethodType(configure_optimizers, model)
trainer = instantiate(config.trainer, logger=logger, callbacks=callbacks)
trainer.fit(model)
trainer.test(model)
logger.experiment.log_artifact(
logger.run_id, f"{trainer.default_root_dir}/config.yaml"
)
saved_location = os.path.join(
trainer.default_root_dir, "model", f"model_{JOB_ID}.ckpt"
)
if os.path.isfile(saved_location):
logger.experiment.log_artifact(logger.run_id, saved_location)
logger.experiment.log_param(
logger.run_id,
"num_train_steps_per_epoch",
dataset.train__len__() / dataset.batch_size,
)
logger.experiment.log_param(
logger.run_id,
"num_valid_steps_per_epoch",
dataset.val__len__() / dataset.batch_size,
)
if __name__ == "__main__":
train()

View File

@ -3,5 +3,5 @@ defaults:
- dataset : Vctk - dataset : Vctk
- optimizer : Adam - optimizer : Adam
- hyperparameters : default - hyperparameters : default
- trainer : fastrun_dev - trainer : default
- mlflow : experiment - mlflow : experiment

View File

@ -0,0 +1,12 @@
_target_: mayavoz.data.dataset.MayaDataset
name : MS-SDSD
root_dir : /Users/shahules/Myprojects/MS-SNSD
duration : 2.0
sampling_rate: 16000
batch_size: 32
min_valid_minutes: 15
files:
train_clean : CleanSpeech_training
test_clean : CleanSpeech_training
train_noisy : NoisySpeech_training
test_noisy : NoisySpeech_training

View File

@ -0,0 +1,13 @@
_target_: mayavoz.data.dataset.MayaDataset
name : Valentini
root_dir : /scratch/c.sistc3/DS_10283_2791
duration : 4.5
stride : 2
sampling_rate: 16000
batch_size: 32
valid_minutes : 15
files:
train_clean : clean_trainset_28spk_wav
test_clean : clean_testset_wav
train_noisy : noisy_trainset_28spk_wav
test_noisy : noisy_testset_wav

View File

@ -0,0 +1,7 @@
loss : mae
metric : [stoi,pesq,si-sdr]
lr : 0.0003
ReduceLr_patience : 5
ReduceLr_factor : 0.2
min_lr : 0.000001
EarlyStopping_factor : 10

View File

@ -0,0 +1,2 @@
experiment_name : shahules/mayavoz
run_name : Demucs + Vtck with stride + augmentations

View File

@ -0,0 +1,25 @@
_target_: mayavoz.models.dccrn.DCCRN
num_channels: 1
sampling_rate : 16000
complex_lstm : True
complex_norm : True
complex_relu : True
masking_mode : True
encoder_decoder:
initial_output_channels : 32
depth : 6
kernel_size : 5
growth_factor : 2
stride : 2
padding : 2
output_padding : 1
lstm:
num_layers : 2
hidden_size : 256
stft:
window_len : 400
hop_size : 100
nfft : 512

View File

@ -1,11 +1,11 @@
_target_: enhancer.models.demucs.Demucs _target_: mayavoz.models.demucs.Demucs
num_channels: 1 num_channels: 1
resample: 2 resample: 4
sampling_rate : 16000 sampling_rate : 16000
encoder_decoder: encoder_decoder:
depth: 5 depth: 4
initial_output_channels: 32 initial_output_channels: 64
kernel_size: 8 kernel_size: 8
stride: 4 stride: 4
growth_factor: 2 growth_factor: 2

View File

@ -1,5 +1,5 @@
_target_: enhancer.models.waveunet.WaveUnet _target_: mayavoz.models.waveunet.WaveUnet
num_channels : 1 num_channels : 1
depth : 12 depth : 9
initial_output_channels: 24 initial_output_channels: 24
sampling_rate : 16000 sampling_rate : 16000

View File

@ -0,0 +1,46 @@
_target_: pytorch_lightning.Trainer
accelerator: gpu
accumulate_grad_batches: 1
amp_backend: native
auto_lr_find: True
auto_scale_batch_size: False
auto_select_gpus: True
benchmark: False
check_val_every_n_epoch: 1
detect_anomaly: False
deterministic: False
devices: 2
enable_checkpointing: True
enable_model_summary: True
enable_progress_bar: True
fast_dev_run: False
gpus: null
gradient_clip_val: 0
gradient_clip_algorithm: norm
ipus: null
limit_predict_batches: 1.0
limit_test_batches: 1.0
limit_train_batches: 1.0
limit_val_batches: 1.0
log_every_n_steps: 50
max_epochs: 200
max_steps: -1
max_time: null
min_epochs: 1
min_steps: null
move_metrics_to_cpu: False
multiple_trainloader_mode: max_size_cycle
num_nodes: 1
num_processes: 1
num_sanity_val_steps: 2
overfit_batches: 0.0
precision: 32
profiler: null
reload_dataloaders_every_n_epochs: 0
replace_sampler_ddp: True
strategy: ddp
sync_batchnorm: False
tpu_cores: null
track_grad_norm: -1
val_check_interval: 1.0
weights_save_path: null

1
mayavoz/data/__init__.py Normal file
View File

@ -0,0 +1 @@
from mayavoz.data.dataset import MayaDataset

393
mayavoz/data/dataset.py Normal file
View File

@ -0,0 +1,393 @@
import math
import multiprocessing
import os
import sys
import warnings
from pathlib import Path
from typing import Optional
import numpy as np
import pytorch_lightning as pl
import torch
import torch.nn.functional as F
from torch.utils.data import DataLoader, Dataset, RandomSampler
from torch_audiomentations import Compose
from mayavoz.data.fileprocessor import Fileprocessor
from mayavoz.utils import check_files
from mayavoz.utils.config import Files
from mayavoz.utils.io import Audio
from mayavoz.utils.random import create_unique_rng
LARGE_NUM = 2147483647
class TrainDataset(Dataset):
def __init__(self, dataset):
self.dataset = dataset
def __getitem__(self, idx):
return self.dataset.train__getitem__(idx)
def __len__(self):
return self.dataset.train__len__()
class ValidDataset(Dataset):
def __init__(self, dataset):
self.dataset = dataset
def __getitem__(self, idx):
return self.dataset.val__getitem__(idx)
def __len__(self):
return self.dataset.val__len__()
class TestDataset(Dataset):
def __init__(self, dataset):
self.dataset = dataset
def __getitem__(self, idx):
return self.dataset.test__getitem__(idx)
def __len__(self):
return self.dataset.test__len__()
class TaskDataset(pl.LightningDataModule):
def __init__(
self,
name: str,
root_dir: str,
files: Files,
min_valid_minutes: float = 0.20,
duration: float = 1.0,
stride=None,
sampling_rate: int = 48000,
matching_function=None,
batch_size=32,
num_workers: Optional[int] = None,
augmentations: Optional[Compose] = None,
):
super().__init__()
self.name = name
self.files, self.root_dir = check_files(root_dir, files)
self.duration = duration
self.stride = stride or duration
self.sampling_rate = sampling_rate
self.batch_size = batch_size
self.matching_function = matching_function
self._validation = []
if num_workers is None:
num_workers = multiprocessing.cpu_count() // 2
if num_workers is None:
num_workers = multiprocessing.cpu_count() // 2
if (
num_workers > 0
and sys.platform == "darwin"
and sys.version_info[0] >= 3
and sys.version_info[1] >= 8
):
warnings.warn(
"num_workers > 0 is not supported with macOS and Python 3.8+: "
"setting num_workers = 0."
)
num_workers = 0
self.num_workers = num_workers
if min_valid_minutes > 0.0:
self.min_valid_minutes = min_valid_minutes
else:
raise ValueError("min_valid_minutes must be greater than 0")
self.augmentations = augmentations
def setup(self, stage: Optional[str] = None):
"""
prepare train/validation/test data splits
"""
if stage in ("fit", None):
train_clean = os.path.join(self.root_dir, self.files.train_clean)
train_noisy = os.path.join(self.root_dir, self.files.train_noisy)
fp = Fileprocessor.from_name(
self.name, train_clean, train_noisy, self.matching_function
)
train_data = fp.prepare_matching_dict()
train_data, self.val_data = self.train_valid_split(
train_data,
min_valid_minutes=self.min_valid_minutes,
random_state=42,
)
self.train_data = self.prepare_traindata(train_data)
self._validation = self.prepare_mapstype(self.val_data)
test_clean = os.path.join(self.root_dir, self.files.test_clean)
test_noisy = os.path.join(self.root_dir, self.files.test_noisy)
fp = Fileprocessor.from_name(
self.name, test_clean, test_noisy, self.matching_function
)
test_data = fp.prepare_matching_dict()
self._test = self.prepare_mapstype(test_data)
def train_valid_split(
self, data, min_valid_minutes: float = 20, random_state: int = 42
):
min_valid_minutes *= 60
valid_sec_now = 0.0
valid_indices = []
all_speakers = np.unique(
[Path(file["clean"]).name.split("_")[0] for file in data]
)
possible_indices = list(range(0, len(all_speakers)))
rng = create_unique_rng(len(all_speakers))
while valid_sec_now <= min_valid_minutes:
speaker_index = rng.choice(possible_indices)
possible_indices.remove(speaker_index)
speaker_name = all_speakers[speaker_index]
print(f"Selected f{speaker_name} for valid")
file_indices = [
i
for i, file in enumerate(data)
if speaker_name == Path(file["clean"]).name.split("_")[0]
]
for i in file_indices:
valid_indices.append(i)
valid_sec_now += data[i]["duration"]
train_data = [
item for i, item in enumerate(data) if i not in valid_indices
]
valid_data = [item for i, item in enumerate(data) if i in valid_indices]
return train_data, valid_data
def prepare_traindata(self, data):
train_data = []
for item in data:
clean, noisy, total_dur = item.values()
num_segments = self.get_num_segments(
total_dur, self.duration, self.stride
)
samples_metadata = ({"clean": clean, "noisy": noisy}, num_segments)
train_data.append(samples_metadata)
return train_data
@staticmethod
def get_num_segments(file_duration, duration, stride):
if file_duration < duration:
num_segments = 1
else:
num_segments = math.ceil((file_duration - duration) / stride) + 1
return num_segments
def prepare_mapstype(self, data):
metadata = []
for item in data:
clean, noisy, total_dur = item.values()
if total_dur < self.duration:
metadata.append(({"clean": clean, "noisy": noisy}, 0.0))
else:
num_segments = self.get_num_segments(
total_dur, self.duration, self.duration
)
for index in range(num_segments):
start_time = index * self.duration
metadata.append(
({"clean": clean, "noisy": noisy}, start_time)
)
return metadata
def train_collatefn(self, batch):
output = {"clean": [], "noisy": []}
for item in batch:
output["clean"].append(item["clean"])
output["noisy"].append(item["noisy"])
output["clean"] = torch.stack(output["clean"], dim=0)
output["noisy"] = torch.stack(output["noisy"], dim=0)
if self.augmentations is not None:
noise = output["noisy"] - output["clean"]
output["clean"] = self.augmentations(
output["clean"], sample_rate=self.sampling_rate
)
self.augmentations.freeze_parameters()
output["noisy"] = (
self.augmentations(noise, sample_rate=self.sampling_rate)
+ output["clean"]
)
return output
@property
def generator(self):
generator = torch.Generator()
if hasattr(self, "model"):
seed = self.model.current_epoch + LARGE_NUM
else:
seed = LARGE_NUM
return generator.manual_seed(seed)
def train_dataloader(self):
dataset = TrainDataset(self)
sampler = RandomSampler(dataset, generator=self.generator)
return DataLoader(
dataset,
batch_size=self.batch_size,
num_workers=self.num_workers,
sampler=sampler,
collate_fn=self.train_collatefn,
)
def val_dataloader(self):
return DataLoader(
ValidDataset(self),
batch_size=self.batch_size,
num_workers=self.num_workers,
)
def test_dataloader(self):
return DataLoader(
TestDataset(self),
batch_size=self.batch_size,
num_workers=self.num_workers,
)
class MayaDataset(TaskDataset):
"""
Dataset object for creating clean-noisy speech enhancement datasets
paramters:
name : str
name of the dataset
root_dir : str
root directory of the dataset containing clean/noisy folders
files : Files
dataclass containing train_clean, train_noisy, test_clean, test_noisy
folder names (refer mayavoz.utils.Files dataclass)
min_valid_minutes: float
minimum validation split size time in minutes
algorithm randomly select n speakers (>=min_valid_minutes) from train data to form validation data.
duration : float
expected audio duration of single audio sample for training
sampling_rate : int
desired sampling rate
batch_size : int
batch size of each batch
num_workers : int
num workers to be used while training
matching_function : str
maching functions - (one_to_one,one_to_many). Default set to None.
use one_to_one mapping for datasets with one noisy file for each clean file
use one_to_many mapping for multiple noisy files for each clean file
"""
def __init__(
self,
name: str,
root_dir: str,
files: Files,
min_valid_minutes=5.0,
duration=1.0,
stride=None,
sampling_rate=48000,
matching_function=None,
batch_size=32,
num_workers: Optional[int] = None,
augmentations: Optional[Compose] = None,
):
super().__init__(
name=name,
root_dir=root_dir,
files=files,
min_valid_minutes=min_valid_minutes,
sampling_rate=sampling_rate,
duration=duration,
matching_function=matching_function,
batch_size=batch_size,
num_workers=num_workers,
augmentations=augmentations,
)
self.sampling_rate = sampling_rate
self.files = files
self.duration = max(1.0, duration)
self.audio = Audio(self.sampling_rate, mono=True, return_tensor=True)
self.stride = stride or duration
def setup(self, stage: Optional[str] = None):
super().setup(stage=stage)
def train__getitem__(self, idx):
for filedict, num_samples in self.train_data:
if idx >= num_samples:
idx -= num_samples
continue
else:
start = 0
if self.duration is not None:
start = idx * self.stride
return self.prepare_segment(filedict, start)
def val__getitem__(self, idx):
return self.prepare_segment(*self._validation[idx])
def test__getitem__(self, idx):
return self.prepare_segment(*self._test[idx])
def prepare_segment(self, file_dict: dict, start_time: float):
clean_segment = self.audio(
file_dict["clean"], offset=start_time, duration=self.duration
)
noisy_segment = self.audio(
file_dict["noisy"], offset=start_time, duration=self.duration
)
clean_segment = F.pad(
clean_segment,
(
0,
int(
self.duration * self.sampling_rate - clean_segment.shape[-1]
),
),
)
noisy_segment = F.pad(
noisy_segment,
(
0,
int(
self.duration * self.sampling_rate - noisy_segment.shape[-1]
),
),
)
return {
"clean": clean_segment,
"noisy": noisy_segment,
}
def train__len__(self):
_, num_examples = list(zip(*self.train_data))
return sum(num_examples)
def val__len__(self):
return len(self._validation)
def test__len__(self):
return len(self._test)

View File

@ -62,25 +62,24 @@ class ProcessorFunctions:
] ]
for clean_file in clean_filenames: for clean_file in clean_filenames:
noisy_filenames = glob.glob( noisy_filenames = glob.glob(
os.path.join(noisy_path, f"*_{clean_file}.wav") os.path.join(noisy_path, f"*_{clean_file}")
) )
for noisy_file in noisy_filenames: for noisy_file in noisy_filenames:
sr_clean, clean_file = wavfile.read( sr_clean, clean_wav = wavfile.read(
os.path.join(clean_path, clean_file) os.path.join(clean_path, clean_file)
) )
sr_noisy, noisy_file = wavfile.read(noisy_file) sr_noisy, noisy_wav = wavfile.read(noisy_file)
if (clean_file.shape[-1] == noisy_file.shape[-1]) and ( if (clean_wav.shape[-1] == noisy_wav.shape[-1]) and (
sr_clean == sr_noisy sr_clean == sr_noisy
): ):
matching_wavfiles.append( matching_wavfiles.append(
{ {
"clean": os.path.join(clean_path, clean_file), "clean": os.path.join(clean_path, clean_file),
"noisy": noisy_file, "noisy": noisy_file,
"duration": clean_file.shape[-1] / sr_clean, "duration": clean_wav.shape[-1] / sr_clean,
} }
) )
return matching_wavfiles return matching_wavfiles
@ -94,9 +93,9 @@ class Fileprocessor:
def from_name(cls, name: str, clean_dir, noisy_dir, matching_function=None): def from_name(cls, name: str, clean_dir, noisy_dir, matching_function=None):
if matching_function is None: if matching_function is None:
if name.lower() == "vctk": if name.lower() in ("vctk", "valentini"):
return cls(clean_dir, noisy_dir, ProcessorFunctions.one_to_one) return cls(clean_dir, noisy_dir, ProcessorFunctions.one_to_one)
elif name.lower() == "dns-2020": elif name.lower() == "ms-snsd":
return cls(clean_dir, noisy_dir, ProcessorFunctions.one_to_many) return cls(clean_dir, noisy_dir, ProcessorFunctions.one_to_many)
else: else:
raise ValueError( raise ValueError(

View File

@ -8,7 +8,7 @@ from librosa import load as load_audio
from scipy.io import wavfile from scipy.io import wavfile
from scipy.signal import get_window from scipy.signal import get_window
from enhancer.utils import Audio from mayavoz.utils import Audio
class Inference: class Inference:
@ -95,6 +95,7 @@ class Inference:
): ):
""" """
stitch batched waveform into single waveform. (Overlap-add) stitch batched waveform into single waveform. (Overlap-add)
inspired from https://github.com/asteroid-team/asteroid
arguments: arguments:
data: batched waveform data: batched waveform
window_size : window_size used to batch waveform window_size : window_size used to batch waveform

View File

@ -1,8 +1,9 @@
import logging import warnings
import numpy as np import numpy as np
import torch import torch
import torch.nn as nn import torch.nn as nn
from torchmetrics import ScaleInvariantSignalNoiseRatio
from torchmetrics.audio.pesq import PerceptualEvaluationSpeechQuality from torchmetrics.audio.pesq import PerceptualEvaluationSpeechQuality
from torchmetrics.audio.stoi import ShortTimeObjectiveIntelligibility from torchmetrics.audio.stoi import ShortTimeObjectiveIntelligibility
@ -65,8 +66,8 @@ class Si_SDR:
raise TypeError( raise TypeError(
"Invalid reduction, valid options are sum, mean, None" "Invalid reduction, valid options are sum, mean, None"
) )
self.higher_better = False self.higher_better = True
self.name = "Si-SDR" self.name = "si-sdr"
def __call__(self, prediction: torch.Tensor, target: torch.Tensor): def __call__(self, prediction: torch.Tensor, target: torch.Tensor):
@ -122,18 +123,18 @@ class Pesq:
self.sr = sr self.sr = sr
self.name = "pesq" self.name = "pesq"
self.mode = mode self.mode = mode
self.pesq = PerceptualEvaluationSpeechQuality(fs=sr, mode=mode) self.pesq = PerceptualEvaluationSpeechQuality(
fs=self.sr, mode=self.mode
)
def __call__(self, prediction: torch.Tensor, target: torch.Tensor): def __call__(self, prediction: torch.Tensor, target: torch.Tensor):
pesq_values = [] pesq_values = []
for pred, target_ in zip(prediction, target): for pred, target_ in zip(prediction, target):
try: try:
pesq_values.append( pesq_values.append(self.pesq(pred.squeeze(), target_.squeeze()))
self.pesq(pred.squeeze(), target_.squeeze()).item()
)
except Exception as e: except Exception as e:
logging.warning(f"{e} error occured while calculating PESQ") warnings.warn(f"{e} error occured while calculating PESQ")
return torch.tensor(np.mean(pesq_values)) return torch.tensor(np.mean(pesq_values))
@ -182,10 +183,34 @@ class LossWrapper(nn.Module):
return loss return loss
class Si_snr(nn.Module):
"""
SI-SNR
"""
def __init__(self, **kwargs):
super().__init__()
self.loss_fun = ScaleInvariantSignalNoiseRatio(**kwargs)
self.higher_better = False
self.name = "si_snr"
def forward(self, prediction: torch.Tensor, target: torch.Tensor):
if prediction.size() != target.size() or target.ndim < 3:
raise TypeError(
f"""Inputs must be of the same shape (batch_size,channels,samples)
got {prediction.size()} and {target.size()} instead"""
)
return -1 * self.loss_fun(prediction, target)
LOSS_MAP = { LOSS_MAP = {
"mae": mean_absolute_error, "mae": mean_absolute_error,
"mse": mean_squared_error, "mse": mean_squared_error,
"si-sdr": Si_SDR, "si-sdr": Si_SDR,
"pesq": Pesq, "pesq": Pesq,
"stoi": Stoi, "stoi": Stoi,
"si-snr": Si_snr,
} }

View File

@ -0,0 +1,3 @@
from mayavoz.models.demucs import Demucs
from mayavoz.models.model import Mayamodel
from mayavoz.models.waveunet import WaveUnet

View File

@ -0,0 +1,5 @@
from mayavoz.models.complexnn.conv import ComplexConv2d # noqa
from mayavoz.models.complexnn.conv import ComplexConvTranspose2d # noqa
from mayavoz.models.complexnn.rnn import ComplexLSTM # noqa
from mayavoz.models.complexnn.utils import ComplexBatchNorm2D # noqa
from mayavoz.models.complexnn.utils import ComplexRelu # noqa

View File

@ -0,0 +1,136 @@
from typing import Tuple
import torch
import torch.nn.functional as F
from torch import nn
def init_weights(nnet):
nn.init.xavier_normal_(nnet.weight.data)
nn.init.constant_(nnet.bias, 0.0)
return nnet
class ComplexConv2d(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: int,
kernel_size: Tuple[int, int] = (1, 1),
stride: Tuple[int, int] = (1, 1),
padding: Tuple[int, int] = (0, 0),
groups: int = 1,
dilation: int = 1,
):
"""
Complex Conv2d (non-causal)
"""
super().__init__()
self.in_channels = in_channels // 2
self.out_channels = out_channels // 2
self.kernel_size = kernel_size
self.stride = stride
self.padding = padding
self.groups = groups
self.dilation = dilation
self.real_conv = nn.Conv2d(
self.in_channels,
self.out_channels,
kernel_size=self.kernel_size,
stride=self.stride,
padding=(self.padding[0], 0),
groups=self.groups,
dilation=self.dilation,
)
self.imag_conv = nn.Conv2d(
self.in_channels,
self.out_channels,
kernel_size=self.kernel_size,
stride=self.stride,
padding=(self.padding[0], 0),
groups=self.groups,
dilation=self.dilation,
)
self.imag_conv = init_weights(self.imag_conv)
self.real_conv = init_weights(self.real_conv)
def forward(self, input):
"""
complex axis should be always 1 dim
"""
input = F.pad(input, [self.padding[1], 0, 0, 0])
real, imag = torch.chunk(input, 2, 1)
real_real = self.real_conv(real)
real_imag = self.imag_conv(real)
imag_imag = self.imag_conv(imag)
imag_real = self.real_conv(imag)
real = real_real - imag_imag
imag = real_imag - imag_real
out = torch.cat([real, imag], 1)
return out
class ComplexConvTranspose2d(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: int,
kernel_size: Tuple[int, int] = (1, 1),
stride: Tuple[int, int] = (1, 1),
padding: Tuple[int, int] = (0, 0),
output_padding: Tuple[int, int] = (0, 0),
groups: int = 1,
):
super().__init__()
self.in_channels = in_channels // 2
self.out_channels = out_channels // 2
self.kernel_size = kernel_size
self.stride = stride
self.padding = padding
self.groups = groups
self.output_padding = output_padding
self.real_conv = nn.ConvTranspose2d(
self.in_channels,
self.out_channels,
kernel_size=self.kernel_size,
stride=self.stride,
padding=self.padding,
output_padding=self.output_padding,
groups=self.groups,
)
self.imag_conv = nn.ConvTranspose2d(
self.in_channels,
self.out_channels,
kernel_size=self.kernel_size,
stride=self.stride,
padding=self.padding,
output_padding=self.output_padding,
groups=self.groups,
)
self.real_conv = init_weights(self.real_conv)
self.imag_conv = init_weights(self.imag_conv)
def forward(self, input):
real, imag = torch.chunk(input, 2, 1)
real_real = self.real_conv(real)
real_imag = self.imag_conv(real)
imag_imag = self.imag_conv(imag)
imag_real = self.real_conv(imag)
real = real_real - imag_imag
imag = real_imag + imag_real
out = torch.cat([real, imag], 1)
return out

View File

@ -0,0 +1,68 @@
from typing import List, Optional
import torch
from torch import nn
class ComplexLSTM(nn.Module):
def __init__(
self,
input_size: int,
hidden_size: int,
num_layers: int = 1,
projection_size: Optional[int] = None,
bidirectional: bool = False,
):
super().__init__()
self.input_size = input_size // 2
self.hidden_size = hidden_size // 2
self.num_layers = num_layers
self.real_lstm = nn.LSTM(
self.input_size,
self.hidden_size,
self.num_layers,
bidirectional=bidirectional,
batch_first=False,
)
self.imag_lstm = nn.LSTM(
self.input_size,
self.hidden_size,
self.num_layers,
bidirectional=bidirectional,
batch_first=False,
)
bidirectional = 2 if bidirectional else 1
if projection_size is not None:
self.projection_size = projection_size // 2
self.real_linear = nn.Linear(
self.hidden_size * bidirectional, self.projection_size
)
self.imag_linear = nn.Linear(
self.hidden_size * bidirectional, self.projection_size
)
else:
self.projection_size = None
def forward(self, input):
if isinstance(input, List):
real, imag = input
else:
real, imag = torch.chunk(input, 2, 1)
real_real = self.real_lstm(real)[0]
real_imag = self.imag_lstm(real)[0]
imag_imag = self.imag_lstm(imag)[0]
imag_real = self.real_lstm(imag)[0]
real = real_real - imag_imag
imag = imag_real + real_imag
if self.projection_size is not None:
real = self.real_linear(real)
imag = self.imag_linear(imag)
return [real, imag]

View File

@ -0,0 +1,199 @@
import torch
from torch import nn
class ComplexBatchNorm2D(nn.Module):
def __init__(
self,
num_features: int,
eps: float = 1e-5,
momentum: float = 0.1,
affine: bool = True,
track_running_stats: bool = True,
):
"""
Complex batch normalization 2D
https://arxiv.org/abs/1705.09792
"""
super().__init__()
self.num_features = num_features // 2
self.affine = affine
self.momentum = momentum
self.track_running_stats = track_running_stats
self.eps = eps
if self.affine:
self.Wrr = nn.parameter.Parameter(torch.Tensor(self.num_features))
self.Wri = nn.parameter.Parameter(torch.Tensor(self.num_features))
self.Wii = nn.parameter.Parameter(torch.Tensor(self.num_features))
self.Br = nn.parameter.Parameter(torch.Tensor(self.num_features))
self.Bi = nn.parameter.Parameter(torch.Tensor(self.num_features))
else:
self.register_parameter("Wrr", None)
self.register_parameter("Wri", None)
self.register_parameter("Wii", None)
self.register_parameter("Br", None)
self.register_parameter("Bi", None)
if self.track_running_stats:
values = torch.zeros(self.num_features)
self.register_buffer("Mean_real", values)
self.register_buffer("Mean_imag", values)
self.register_buffer("Var_rr", values)
self.register_buffer("Var_ri", values)
self.register_buffer("Var_ii", values)
self.register_buffer(
"num_batches_tracked", torch.tensor(0, dtype=torch.long)
)
else:
self.register_parameter("Mean_real", None)
self.register_parameter("Mean_imag", None)
self.register_parameter("Var_rr", None)
self.register_parameter("Var_ri", None)
self.register_parameter("Var_ii", None)
self.register_parameter("num_batches_tracked", None)
self.reset_parameters()
def reset_parameters(self):
if self.affine:
self.Wrr.data.fill_(1)
self.Wii.data.fill_(1)
self.Wri.data.uniform_(-0.9, 0.9)
self.Br.data.fill_(0)
self.Bi.data.fill_(0)
self.reset_running_stats()
def reset_running_stats(self):
if self.track_running_stats:
self.Mean_real.zero_()
self.Mean_imag.zero_()
self.Var_rr.fill_(1)
self.Var_ri.zero_()
self.Var_ii.fill_(1)
self.num_batches_tracked.zero_()
def extra_repr(self):
return "{num_features}, eps={eps}, momentum={momentum}, affine={affine}, track_running_stats={track_running_stats}".format(
**self.__dict__
)
def forward(self, input):
real, imag = torch.chunk(input, 2, 1)
exp_avg_factor = 0.0
training = self.training and self.track_running_stats
if training:
self.num_batches_tracked += 1
if self.momentum is None:
exp_avg_factor = 1 / self.num_batches_tracked
else:
exp_avg_factor = self.momentum
redux = [i for i in reversed(range(real.dim())) if i != 1]
vdim = [1] * real.dim()
vdim[1] = real.size(1)
if training:
batch_mean_real, batch_mean_imag = real, imag
for dim in redux:
batch_mean_real = batch_mean_real.mean(dim, keepdim=True)
batch_mean_imag = batch_mean_imag.mean(dim, keepdim=True)
if self.track_running_stats:
self.Mean_real.lerp_(batch_mean_real.squeeze(), exp_avg_factor)
self.Mean_imag.lerp_(batch_mean_imag.squeeze(), exp_avg_factor)
else:
batch_mean_real = self.Mean_real.view(vdim)
batch_mean_imag = self.Mean_imag.view(vdim)
real = real - batch_mean_real
imag = imag - batch_mean_imag
if training:
batch_var_rr = real * real
batch_var_ri = real * imag
batch_var_ii = imag * imag
for dim in redux:
batch_var_rr = batch_var_rr.mean(dim, keepdim=True)
batch_var_ri = batch_var_ri.mean(dim, keepdim=True)
batch_var_ii = batch_var_ii.mean(dim, keepdim=True)
if self.track_running_stats:
self.Var_rr.lerp_(batch_var_rr.squeeze(), exp_avg_factor)
self.Var_ri.lerp_(batch_var_ri.squeeze(), exp_avg_factor)
self.Var_ii.lerp_(batch_var_ii.squeeze(), exp_avg_factor)
else:
batch_var_rr = self.Var_rr.view(vdim)
batch_var_ii = self.Var_ii.view(vdim)
batch_var_ri = self.Var_ri.view(vdim)
batch_var_rr += self.eps
batch_var_ii += self.eps
# Covariance matrics
# | batch_var_rr batch_var_ri |
# | batch_var_ir batch_var_ii | here batch_var_ir == batch_var_ri
# Inverse square root of cov matrix by combining below two formulas
# https://en.wikipedia.org/wiki/Square_root_of_a_2_by_2_matrix
# https://mathworld.wolfram.com/MatrixInverse.html
tau = batch_var_rr + batch_var_ii
s = batch_var_rr * batch_var_ii - batch_var_ri * batch_var_ri
t = (tau + 2 * s).sqrt()
rst = (s * t).reciprocal()
Urr = (batch_var_ii + s) * rst
Uri = -batch_var_ri * rst
Uii = (batch_var_rr + s) * rst
if self.affine:
Wrr, Wri, Wii = (
self.Wrr.view(vdim),
self.Wri.view(vdim),
self.Wii.view(vdim),
)
Zrr = (Wrr * Urr) + (Wri * Uri)
Zri = (Wrr * Uri) + (Wri * Uii)
Zir = (Wii * Uri) + (Wri * Urr)
Zii = (Wri * Uri) + (Wii * Uii)
else:
Zrr, Zri, Zir, Zii = Urr, Uri, Uri, Uii
yr = (Zrr * real) + (Zri * imag)
yi = (Zir * real) + (Zii * imag)
if self.affine:
yr = yr + self.Br.view(vdim)
yi = yi + self.Bi.view(vdim)
outputs = torch.cat([yr, yi], 1)
return outputs
class ComplexRelu(nn.Module):
def __init__(self):
super().__init__()
self.real_relu = nn.PReLU()
self.imag_relu = nn.PReLU()
def forward(self, input):
real, imag = torch.chunk(input, 2, 1)
real = self.real_relu(real)
imag = self.imag_relu(imag)
return torch.cat([real, imag], dim=1)
def complex_cat(inputs, axis=1):
real, imag = [], []
for data in inputs:
real_data, imag_data = torch.chunk(data, 2, axis)
real.append(real_data)
imag.append(imag_data)
real = torch.cat(real, axis)
imag = torch.cat(imag, axis)
return torch.cat([real, imag], axis)

338
mayavoz/models/dccrn.py Normal file
View File

@ -0,0 +1,338 @@
import warnings
from typing import Any, List, Optional, Tuple, Union
import torch
import torch.nn.functional as F
from torch import nn
from mayavoz.data import MayaDataset
from mayavoz.models import Mayamodel
from mayavoz.models.complexnn import (
ComplexBatchNorm2D,
ComplexConv2d,
ComplexConvTranspose2d,
ComplexLSTM,
ComplexRelu,
)
from mayavoz.models.complexnn.utils import complex_cat
from mayavoz.utils.transforms import ConviSTFT, ConvSTFT
from mayavoz.utils.utils import merge_dict
class DCCRN_ENCODER(nn.Module):
def __init__(
self,
in_channels: int,
out_channel: int,
kernel_size: Tuple[int, int],
complex_norm: bool = True,
complex_relu: bool = True,
stride: Tuple[int, int] = (2, 1),
padding: Tuple[int, int] = (2, 1),
):
super().__init__()
batchnorm = ComplexBatchNorm2D if complex_norm else nn.BatchNorm2d
activation = ComplexRelu() if complex_relu else nn.PReLU()
self.encoder = nn.Sequential(
ComplexConv2d(
in_channels,
out_channel,
kernel_size=kernel_size,
stride=stride,
padding=padding,
),
batchnorm(out_channel),
activation,
)
def forward(self, waveform):
return self.encoder(waveform)
class DCCRN_DECODER(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: int,
kernel_size: Tuple[int, int],
layer: int = 0,
complex_norm: bool = True,
complex_relu: bool = True,
stride: Tuple[int, int] = (2, 1),
padding: Tuple[int, int] = (2, 0),
output_padding: Tuple[int, int] = (1, 0),
):
super().__init__()
batchnorm = ComplexBatchNorm2D if complex_norm else nn.BatchNorm2d
activation = ComplexRelu() if complex_relu else nn.PReLU()
if layer != 0:
self.decoder = nn.Sequential(
ComplexConvTranspose2d(
in_channels,
out_channels,
kernel_size=kernel_size,
stride=stride,
padding=padding,
output_padding=output_padding,
),
batchnorm(out_channels),
activation,
)
else:
self.decoder = nn.Sequential(
ComplexConvTranspose2d(
in_channels,
out_channels,
kernel_size=kernel_size,
stride=stride,
padding=padding,
output_padding=output_padding,
)
)
def forward(self, waveform):
return self.decoder(waveform)
class DCCRN(Mayamodel):
STFT_DEFAULTS = {
"window_len": 400,
"hop_size": 100,
"nfft": 512,
"window": "hamming",
}
ED_DEFAULTS = {
"initial_output_channels": 32,
"depth": 6,
"kernel_size": 5,
"growth_factor": 2,
"stride": 2,
"padding": 2,
"output_padding": 1,
}
LSTM_DEFAULTS = {
"num_layers": 2,
"hidden_size": 256,
}
def __init__(
self,
stft: Optional[dict] = None,
encoder_decoder: Optional[dict] = None,
lstm: Optional[dict] = None,
complex_lstm: bool = True,
complex_norm: bool = True,
complex_relu: bool = True,
masking_mode: str = "E",
num_channels: int = 1,
sampling_rate=16000,
lr: float = 1e-3,
dataset: Optional[MayaDataset] = None,
duration: Optional[float] = None,
loss: Union[str, List, Any] = "mse",
metric: Union[str, List] = "mse",
):
duration = (
dataset.duration if isinstance(dataset, MayaDataset) else duration
)
if dataset is not None:
if sampling_rate != dataset.sampling_rate:
warnings.warn(
f"model sampling rate {sampling_rate} should match dataset sampling rate {dataset.sampling_rate}"
)
sampling_rate = dataset.sampling_rate
super().__init__(
num_channels=num_channels,
sampling_rate=sampling_rate,
lr=lr,
dataset=dataset,
duration=duration,
loss=loss,
metric=metric,
)
encoder_decoder = merge_dict(self.ED_DEFAULTS, encoder_decoder)
lstm = merge_dict(self.LSTM_DEFAULTS, lstm)
stft = merge_dict(self.STFT_DEFAULTS, stft)
self.save_hyperparameters(
"encoder_decoder",
"lstm",
"stft",
"complex_lstm",
"complex_norm",
"masking_mode",
)
self.complex_lstm = complex_lstm
self.complex_norm = complex_norm
self.masking_mode = masking_mode
self.stft = ConvSTFT(
stft["window_len"], stft["hop_size"], stft["nfft"], stft["window"]
)
self.istft = ConviSTFT(
stft["window_len"], stft["hop_size"], stft["nfft"], stft["window"]
)
self.encoder = nn.ModuleList()
self.decoder = nn.ModuleList()
num_channels *= 2
hidden_size = encoder_decoder["initial_output_channels"]
growth_factor = 2
for layer in range(encoder_decoder["depth"]):
encoder_ = DCCRN_ENCODER(
num_channels,
hidden_size,
kernel_size=(encoder_decoder["kernel_size"], 2),
stride=(encoder_decoder["stride"], 1),
padding=(encoder_decoder["padding"], 1),
complex_norm=complex_norm,
complex_relu=complex_relu,
)
self.encoder.append(encoder_)
decoder_ = DCCRN_DECODER(
hidden_size + hidden_size,
num_channels,
layer=layer,
kernel_size=(encoder_decoder["kernel_size"], 2),
stride=(encoder_decoder["stride"], 1),
padding=(encoder_decoder["padding"], 0),
output_padding=(encoder_decoder["output_padding"], 0),
complex_norm=complex_norm,
complex_relu=complex_relu,
)
self.decoder.insert(0, decoder_)
if layer < encoder_decoder["depth"] - 3:
num_channels = hidden_size
hidden_size *= growth_factor
else:
num_channels = hidden_size
kernel_size = hidden_size / 2
hidden_size = stft["nfft"] / 2 ** (encoder_decoder["depth"])
if self.complex_lstm:
lstms = []
for layer in range(lstm["num_layers"]):
if layer == 0:
input_size = int(hidden_size * kernel_size)
else:
input_size = lstm["hidden_size"]
if layer == lstm["num_layers"] - 1:
projection_size = int(hidden_size * kernel_size)
else:
projection_size = None
kwargs = {
"input_size": input_size,
"hidden_size": lstm["hidden_size"],
"num_layers": 1,
}
lstms.append(
ComplexLSTM(projection_size=projection_size, **kwargs)
)
self.lstm = nn.Sequential(*lstms)
else:
self.lstm = nn.Sequential(
nn.LSTM(
input_size=hidden_size * kernel_size,
hidden_sizs=lstm["hidden_size"],
num_layers=lstm["num_layers"],
dropout=0.0,
batch_first=False,
)[0],
nn.Linear(lstm["hidden"], hidden_size * kernel_size),
)
def forward(self, waveform):
if waveform.dim() == 2:
waveform = waveform.unsqueeze(1)
if waveform.size(1) != self.hparams.num_channels:
raise ValueError(
f"Number of input channels initialized is {self.hparams.num_channels} but got {waveform.size(1)} channels"
)
waveform_stft = self.stft(waveform)
real = waveform_stft[:, : self.stft.nfft // 2 + 1]
imag = waveform_stft[:, self.stft.nfft // 2 + 1 :]
mag_spec = torch.sqrt(real**2 + imag**2 + 1e-9)
phase_spec = torch.atan2(imag, real)
complex_spec = torch.stack([mag_spec, phase_spec], 1)[:, :, 1:]
encoder_outputs = []
out = complex_spec
for _, encoder in enumerate(self.encoder):
out = encoder(out)
encoder_outputs.append(out)
B, C, D, T = out.size()
out = out.permute(3, 0, 1, 2)
if self.complex_lstm:
lstm_real = out[:, :, : C // 2]
lstm_imag = out[:, :, C // 2 :]
lstm_real = lstm_real.reshape(T, B, C // 2 * D)
lstm_imag = lstm_imag.reshape(T, B, C // 2 * D)
lstm_real, lstm_imag = self.lstm([lstm_real, lstm_imag])
lstm_real = lstm_real.reshape(T, B, C // 2, D)
lstm_imag = lstm_imag.reshape(T, B, C // 2, D)
out = torch.cat([lstm_real, lstm_imag], 2)
else:
out = out.reshape(T, B, C * D)
out = self.lstm(out)
out = out.reshape(T, B, D, C)
out = out.permute(1, 2, 3, 0)
for layer, decoder in enumerate(self.decoder):
skip_connection = encoder_outputs.pop(-1)
out = complex_cat([skip_connection, out])
out = decoder(out)
out = out[..., 1:]
mask_real, mask_imag = out[:, 0], out[:, 1]
mask_real = F.pad(mask_real, [0, 0, 1, 0])
mask_imag = F.pad(mask_imag, [0, 0, 1, 0])
if self.masking_mode == "E":
mask_mag = torch.sqrt(mask_real**2 + mask_imag**2)
real_phase = mask_real / (mask_mag + 1e-8)
imag_phase = mask_imag / (mask_mag + 1e-8)
mask_phase = torch.atan2(imag_phase, real_phase)
mask_mag = torch.tanh(mask_mag)
est_mag = mask_mag * mag_spec
est_phase = mask_phase * phase_spec
# cos(theta) + isin(theta)
real = est_mag + torch.cos(est_phase)
imag = est_mag + torch.sin(est_phase)
if self.masking_mode == "C":
real = real * mask_real - imag * mask_imag
imag = real * mask_imag + imag * mask_real
else:
real = real * mask_real
imag = imag * mask_imag
spec = torch.cat([real, imag], 1)
wav = self.istft(spec)
wav = wav.clamp_(-1, 1)
return wav

View File

@ -1,14 +1,14 @@
import logging
import math import math
import warnings
from typing import List, Optional, Union from typing import List, Optional, Union
import torch.nn.functional as F import torch.nn.functional as F
from torch import nn from torch import nn
from enhancer.data.dataset import EnhancerDataset from mayavoz.data.dataset import MayaDataset
from enhancer.models.model import Model from mayavoz.models.model import Mayamodel
from enhancer.utils.io import Audio as audio from mayavoz.utils.io import Audio as audio
from enhancer.utils.utils import merge_dict from mayavoz.utils.utils import merge_dict
class DemucsLSTM(nn.Module): class DemucsLSTM(nn.Module):
@ -88,7 +88,7 @@ class DemucsDecoder(nn.Module):
return out return out
class Demucs(Model): class Demucs(Mayamodel):
""" """
Demucs model from https://arxiv.org/pdf/1911.13254.pdf Demucs model from https://arxiv.org/pdf/1911.13254.pdf
parameters: parameters:
@ -102,8 +102,8 @@ class Demucs(Model):
sampling rate of input audio sampling rate of input audio
lr : float, defaults to 1e-3 lr : float, defaults to 1e-3
learning rate used for training learning rate used for training
dataset: EnhancerDataset, optional dataset: MayaDataset, optional
EnhancerDataset object containing train/validation data for training MayaDataset object containing train/validation data for training
duration : float, optional duration : float, optional
chunk duration in seconds chunk duration in seconds
loss : string or List of strings loss : string or List of strings
@ -133,17 +133,20 @@ class Demucs(Model):
num_channels: int = 1, num_channels: int = 1,
resample: int = 4, resample: int = 4,
sampling_rate=16000, sampling_rate=16000,
normalize=True,
lr: float = 1e-3, lr: float = 1e-3,
dataset: Optional[EnhancerDataset] = None, dataset: Optional[MayaDataset] = None,
duration: Optional[float] = None,
loss: Union[str, List] = "mse", loss: Union[str, List] = "mse",
metric: Union[str, List] = "mse", metric: Union[str, List] = "mse",
floor=1e-3,
): ):
duration = ( duration = (
dataset.duration if isinstance(dataset, EnhancerDataset) else None dataset.duration if isinstance(dataset, MayaDataset) else duration
) )
if dataset is not None: if dataset is not None:
if sampling_rate != dataset.sampling_rate: if sampling_rate != dataset.sampling_rate:
logging.warning( warnings.warn(
f"model sampling rate {sampling_rate} should match dataset sampling rate {dataset.sampling_rate}" f"model sampling rate {sampling_rate} should match dataset sampling rate {dataset.sampling_rate}"
) )
sampling_rate = dataset.sampling_rate sampling_rate = dataset.sampling_rate
@ -161,6 +164,8 @@ class Demucs(Model):
lstm = merge_dict(self.LSTM_DEFAULTS, lstm) lstm = merge_dict(self.LSTM_DEFAULTS, lstm)
self.save_hyperparameters("encoder_decoder", "lstm", "resample") self.save_hyperparameters("encoder_decoder", "lstm", "resample")
hidden = encoder_decoder["initial_output_channels"] hidden = encoder_decoder["initial_output_channels"]
self.normalize = normalize
self.floor = floor
self.encoder = nn.ModuleList() self.encoder = nn.ModuleList()
self.decoder = nn.ModuleList() self.decoder = nn.ModuleList()
@ -200,11 +205,16 @@ class Demucs(Model):
if waveform.dim() == 2: if waveform.dim() == 2:
waveform = waveform.unsqueeze(1) waveform = waveform.unsqueeze(1)
if waveform.size(1) != 1: if waveform.size(1) != self.hparams.num_channels:
raise TypeError( raise ValueError(
f"Demucs can only process mono channel audio, input has {waveform.size(1)} channels" f"Number of input channels initialized is {self.hparams.num_channels} but got {waveform.size(1)} channels"
) )
if self.normalize:
waveform = waveform.mean(dim=1, keepdim=True)
std = waveform.std(dim=-1, keepdim=True)
waveform = waveform / (self.floor + std)
else:
std = 1
length = waveform.shape[-1] length = waveform.shape[-1]
x = F.pad(waveform, (0, self.get_padding_length(length) - length)) x = F.pad(waveform, (0, self.get_padding_length(length) - length))
if self.hparams.resample > 1: if self.hparams.resample > 1:
@ -237,7 +247,7 @@ class Demucs(Model):
) )
out = x[..., :length] out = x[..., :length]
return out return std * out
def get_padding_length(self, input_length): def get_padding_length(self, input_length):

View File

@ -2,7 +2,7 @@ import os
from collections import defaultdict from collections import defaultdict
from importlib import import_module from importlib import import_module
from pathlib import Path from pathlib import Path
from typing import List, Optional, Text, Union from typing import Any, List, Optional, Text, Union
from urllib.parse import urlparse from urllib.parse import urlparse
import numpy as np import numpy as np
@ -10,19 +10,24 @@ import pytorch_lightning as pl
import torch import torch
from huggingface_hub import cached_download, hf_hub_url from huggingface_hub import cached_download, hf_hub_url
from pytorch_lightning.utilities.cloud_io import load as pl_load from pytorch_lightning.utilities.cloud_io import load as pl_load
from torch import nn
from torch.optim import Adam from torch.optim import Adam
from enhancer.data.dataset import EnhancerDataset from mayavoz.data.dataset import MayaDataset
from enhancer.inference import Inference from mayavoz.inference import Inference
from enhancer.loss import LOSS_MAP, LossWrapper from mayavoz.loss import LOSS_MAP, LossWrapper
from enhancer.version import __version__ from mayavoz.version import __version__
CACHE_DIR = "" CACHE_DIR = os.getenv(
HF_TORCH_WEIGHTS = "" "ENHANCER_CACHE",
os.path.expanduser("~/.cache/torch/mayavoz"),
)
HF_TORCH_WEIGHTS = "pytorch_model.ckpt"
DEFAULT_DEVICE = "cpu" DEFAULT_DEVICE = "cpu"
SAVE_NAME = "mayavoz"
class Model(pl.LightningModule): class Mayamodel(pl.LightningModule):
""" """
Base class for all models Base class for all models
parameters: parameters:
@ -32,11 +37,11 @@ class Model(pl.LightningModule):
audio sampling rate audio sampling rate
lr: float, optional lr: float, optional
learning rate for model training learning rate for model training
dataset: EnhancerDataset, optional dataset: MayaDataset, optional
Enhancer dataset used for training/validation mayavoz dataset used for training/validation
duration: float, optional duration: float, optional
duration used for training/inference duration used for training/inference
loss : string or List of strings, default to "mse" loss : string or List of strings or custom loss (nn.Module), default to "mse"
loss functions to be used. Available ("mse","mae","Si-SDR") loss functions to be used. Available ("mse","mae","Si-SDR")
""" """
@ -46,15 +51,13 @@ class Model(pl.LightningModule):
num_channels: int = 1, num_channels: int = 1,
sampling_rate: int = 16000, sampling_rate: int = 16000,
lr: float = 1e-3, lr: float = 1e-3,
dataset: Optional[EnhancerDataset] = None, dataset: Optional[MayaDataset] = None,
duration: Optional[float] = None, duration: Optional[float] = None,
loss: Union[str, List] = "mse", loss: Union[str, List] = "mse",
metric: Union[str, List] = "mse", metric: Union[str, List, Any] = "mse",
): ):
super().__init__() super().__init__()
assert ( assert num_channels == 1, "mayavoz only support for mono channel models"
num_channels == 1
), "Enhancer only support for mono channel models"
self.dataset = dataset self.dataset = dataset
self.save_hyperparameters( self.save_hyperparameters(
"num_channels", "sampling_rate", "lr", "loss", "metric", "duration" "num_channels", "sampling_rate", "lr", "loss", "metric", "duration"
@ -86,10 +89,11 @@ class Model(pl.LightningModule):
@metric.setter @metric.setter
def metric(self, metric): def metric(self, metric):
self._metric = [] self._metric = []
if isinstance(metric, str): if isinstance(metric, (str, nn.Module)):
metric = [metric] metric = [metric]
for func in metric: for func in metric:
if isinstance(func, str):
if func in LOSS_MAP.keys(): if func in LOSS_MAP.keys():
if func in ("pesq", "stoi"): if func in ("pesq", "stoi"):
self._metric.append( self._metric.append(
@ -97,9 +101,13 @@ class Model(pl.LightningModule):
) )
else: else:
self._metric.append(LOSS_MAP[func]()) self._metric.append(LOSS_MAP[func]())
else: else:
raise ValueError(f"Invalid metrics {func}") ValueError(f"Invalid metrics {func}")
elif isinstance(func, nn.Module):
self._metric.append(func)
else:
raise ValueError("Invalid metrics")
@property @property
def dataset(self): def dataset(self):
@ -113,22 +121,29 @@ class Model(pl.LightningModule):
if stage == "fit": if stage == "fit":
torch.cuda.empty_cache() torch.cuda.empty_cache()
self.dataset.setup(stage) self.dataset.setup(stage)
self.dataset.model = self
print( print(
"Total train duration", "Total train duration",
self.dataset.train_dataloader().dataset.__len__() / 60, self.dataset.train_dataloader().dataset.__len__()
* self.dataset.duration
/ 60,
"minutes", "minutes",
) )
print( print(
"Total validation duration", "Total validation duration",
self.dataset.val_dataloader().dataset.__len__() / 60, self.dataset.val_dataloader().dataset.__len__()
* self.dataset.duration
/ 60,
"minutes", "minutes",
) )
print( print(
"Total test duration", "Total test duration",
self.dataset.test_dataloader().dataset.__len__() / 60, self.dataset.test_dataloader().dataset.__len__()
* self.dataset.duration
/ 60,
"minutes", "minutes",
) )
self.dataset.model = self
def train_dataloader(self): def train_dataloader(self):
return self.dataset.train_dataloader() return self.dataset.train_dataloader()
@ -219,8 +234,8 @@ class Model(pl.LightningModule):
def on_save_checkpoint(self, checkpoint): def on_save_checkpoint(self, checkpoint):
checkpoint["enhancer"] = { checkpoint[SAVE_NAME] = {
"version": {"enhancer": __version__, "pytorch": torch.__version__}, "version": {SAVE_NAME: __version__, "pytorch": torch.__version__},
"architecture": { "architecture": {
"module": self.__class__.__module__, "module": self.__class__.__module__,
"class": self.__class__.__name__, "class": self.__class__.__name__,
@ -273,8 +288,8 @@ class Model(pl.LightningModule):
Returns Returns
------- -------
model : Model model : Mayamodel
Model Mayamodel
See also See also
-------- --------
@ -303,7 +318,7 @@ class Model(pl.LightningModule):
) )
model_path_pl = cached_download( model_path_pl = cached_download(
url=url, url=url,
library_name="enhancer", library_name="mayavoz",
library_version=__version__, library_version=__version__,
cache_dir=cached_dir, cache_dir=cached_dir,
use_auth_token=use_auth_token, use_auth_token=use_auth_token,
@ -313,8 +328,8 @@ class Model(pl.LightningModule):
map_location = torch.device(DEFAULT_DEVICE) map_location = torch.device(DEFAULT_DEVICE)
loaded_checkpoint = pl_load(model_path_pl, map_location) loaded_checkpoint = pl_load(model_path_pl, map_location)
module_name = loaded_checkpoint["enhancer"]["architecture"]["module"] module_name = loaded_checkpoint[SAVE_NAME]["architecture"]["module"]
class_name = loaded_checkpoint["enhancer"]["architecture"]["class"] class_name = loaded_checkpoint[SAVE_NAME]["architecture"]["class"]
module = import_module(module_name) module = import_module(module_name)
Klass = getattr(module, class_name) Klass = getattr(module, class_name)

View File

@ -1,12 +1,12 @@
import logging import warnings
from typing import List, Optional, Union from typing import List, Optional, Union
import torch import torch
import torch.nn as nn import torch.nn as nn
import torch.nn.functional as F import torch.nn.functional as F
from enhancer.data.dataset import EnhancerDataset from mayavoz.data.dataset import MayaDataset
from enhancer.models.model import Model from mayavoz.models.model import Mayamodel
class WavenetDecoder(nn.Module): class WavenetDecoder(nn.Module):
@ -66,7 +66,7 @@ class WavenetEncoder(nn.Module):
return self.encoder(waveform) return self.encoder(waveform)
class WaveUnet(Model): class WaveUnet(Mayamodel):
""" """
Wave-U-Net model from https://arxiv.org/pdf/1811.11307.pdf Wave-U-Net model from https://arxiv.org/pdf/1811.11307.pdf
parameters: parameters:
@ -80,8 +80,8 @@ class WaveUnet(Model):
sampling rate of input audio sampling rate of input audio
lr : float, defaults to 1e-3 lr : float, defaults to 1e-3
learning rate used for training learning rate used for training
dataset: EnhancerDataset, optional dataset: MayaDataset, optional
EnhancerDataset object containing train/validation data for training MayaDataset object containing train/validation data for training
duration : float, optional duration : float, optional
chunk duration in seconds chunk duration in seconds
loss : string or List of strings loss : string or List of strings
@ -97,17 +97,17 @@ class WaveUnet(Model):
initial_output_channels: int = 24, initial_output_channels: int = 24,
sampling_rate: int = 16000, sampling_rate: int = 16000,
lr: float = 1e-3, lr: float = 1e-3,
dataset: Optional[EnhancerDataset] = None, dataset: Optional[MayaDataset] = None,
duration: Optional[float] = None, duration: Optional[float] = None,
loss: Union[str, List] = "mse", loss: Union[str, List] = "mse",
metric: Union[str, List] = "mse", metric: Union[str, List] = "mse",
): ):
duration = ( duration = (
dataset.duration if isinstance(dataset, EnhancerDataset) else None dataset.duration if isinstance(dataset, MayaDataset) else duration
) )
if dataset is not None: if dataset is not None:
if sampling_rate != dataset.sampling_rate: if sampling_rate != dataset.sampling_rate:
logging.warning( warnings.warn(
f"model sampling rate {sampling_rate} should match dataset sampling rate {dataset.sampling_rate}" f"model sampling rate {sampling_rate} should match dataset sampling rate {dataset.sampling_rate}"
) )
sampling_rate = dataset.sampling_rate sampling_rate = dataset.sampling_rate

View File

@ -0,0 +1,3 @@
from mayavoz.utils.config import Files
from mayavoz.utils.io import Audio
from mayavoz.utils.utils import check_files

View File

@ -70,7 +70,7 @@ class Audio:
if sampling_rate: if sampling_rate:
audio = self.__class__.resample_audio( audio = self.__class__.resample_audio(
audio, self.sampling_rate, sampling_rate audio, sampling_rate, self.sampling_rate
) )
if self.return_tensor: if self.return_tensor:
return torch.tensor(audio) return torch.tensor(audio)

View File

@ -0,0 +1,93 @@
from typing import Optional
import numpy as np
import torch
import torch.nn.functional as F
from scipy.signal import get_window
from torch import nn
class ConvFFT(nn.Module):
def __init__(
self,
window_len: int,
nfft: Optional[int] = None,
window: str = "hamming",
):
super().__init__()
self.window_len = window_len
self.nfft = nfft if nfft else np.int(2 ** np.ceil(np.log2(window_len)))
self.window = torch.from_numpy(
get_window(window, window_len, fftbins=True).astype("float32")
)
def init_kernel(self, inverse=False):
fourier_basis = np.fft.rfft(np.eye(self.nfft))[: self.window_len]
real, imag = np.real(fourier_basis), np.imag(fourier_basis)
kernel = np.concatenate([real, imag], 1).T
if inverse:
kernel = np.linalg.pinv(kernel).T
kernel = torch.from_numpy(kernel.astype("float32")).unsqueeze(1)
kernel *= self.window
return kernel
class ConvSTFT(ConvFFT):
def __init__(
self,
window_len: int,
hop_size: Optional[int] = None,
nfft: Optional[int] = None,
window: str = "hamming",
):
super().__init__(window_len=window_len, nfft=nfft, window=window)
self.hop_size = hop_size if hop_size else window_len // 2
self.register_buffer("weight", self.init_kernel())
def forward(self, input):
if input.dim() < 2:
raise ValueError(
f"Expected signal with shape 2 or 3 got {input.dim()}"
)
elif input.dim() == 2:
input = input.unsqueeze(1)
else:
pass
input = F.pad(
input,
(self.window_len - self.hop_size, self.window_len - self.hop_size),
)
output = F.conv1d(input, self.weight, stride=self.hop_size)
return output
class ConviSTFT(ConvFFT):
def __init__(
self,
window_len: int,
hop_size: Optional[int] = None,
nfft: Optional[int] = None,
window: str = "hamming",
):
super().__init__(window_len=window_len, nfft=nfft, window=window)
self.hop_size = hop_size if hop_size else window_len // 2
self.register_buffer("weight", self.init_kernel(True))
self.register_buffer("enframe", torch.eye(window_len).unsqueeze(1))
def forward(self, input, phase=None):
if phase is not None:
real = input * torch.cos(phase)
imag = input * torch.sin(phase)
input = torch.cat([real, imag], 1)
out = F.conv_transpose1d(input, self.weight, stride=self.hop_size)
coeff = self.window.unsqueeze(1).repeat(1, 1, input.size(-1)) ** 2
coeff = coeff.to(input.device)
coeff = F.conv_transpose1d(coeff, self.enframe, stride=self.hop_size)
out = out / (coeff + 1e-8)
pad = self.window_len - self.hop_size
out = out[..., pad:-pad]
return out

View File

@ -1,7 +1,7 @@
import os import os
from typing import Optional from typing import Optional
from enhancer.utils.config import Files from mayavoz.utils.config import Files
def check_files(root_dir: str, files: Files): def check_files(root_dir: str, files: Files):

View File

@ -1,30 +0,0 @@
# Configuration for generating Noisy Speech Dataset
# - sampling_rate: Specify the sampling rate. Default is 16 kHz
# - audioformat: default is .wav
# - audio_length: Minimum Length of each audio clip (noisy and clean speech) in seconds that will be generated by augmenting utterances.
# - silence_length: Duration of silence introduced between clean speech utterances.
# - total_hours: Total number of hours of data required. Units are in hours.
# - snr_lower: Lower bound for SNR required (default: 0 dB)
# - snr_upper: Upper bound for SNR required (default: 40 dB)
# - total_snrlevels: Number of SNR levels required (default: 5, which means there are 5 levels between snr_lower and snr_upper)
# - noise_dir: Default is None. But specify the noise directory path if noise files are not in the source directory
# - Speech_dir: Default is None. But specify the speech directory path if speech files are not in the source directory
# - noise_types_excluded: Noise files starting with the following tags to be excluded in the noise list. Example: noise_types_excluded: Babble, AirConditioner
# Specify 'None' if no noise files to be excluded.
[noisy_speech]
sampling_rate: 16000
audioformat: *.wav
audio_length: 10
silence_length: 0.2
total_hours: 1
snr_lower: 0
snr_upper: 40
total_snrlevels: 2
naming: test
noise_dir: /scratch/c.sistc3/MS-SNSD/noise_test
speech_dir: /scratch/c.sistc3/MS-SNSD/clean_test
noise_types_excluded: None

View File

@ -1,155 +0,0 @@
"""
@author: chkarada
"""
import argparse
import configparser as CP
import glob
import os
import numpy as np
from audiolib import audioread, audiowrite, snr_mixer
def main(cfg):
snr_lower = float(cfg["snr_lower"])
snr_upper = float(cfg["snr_upper"])
total_snrlevels = int(cfg["total_snrlevels"])
clean_dir = os.path.join(os.path.dirname(__file__), "clean_train")
if cfg["speech_dir"] != "None":
clean_dir = cfg["speech_dir"]
if not os.path.exists(clean_dir):
assert False, "Clean speech data is required"
noise_dir = os.path.join(os.path.dirname(__file__), "noise_train")
if cfg["noise_dir"] != "None":
noise_dir = cfg["noise_dir"]
if not os.path.exists(noise_dir):
assert False, "Noise data is required"
name = cfg["naming"]
fs = float(cfg["sampling_rate"])
audioformat = cfg["audioformat"]
total_hours = float(cfg["total_hours"])
audio_length = float(cfg["audio_length"])
silence_length = float(cfg["silence_length"])
noisyspeech_dir = os.path.join(
os.path.dirname(__file__), f"NoisySpeech_{name}ing"
)
if not os.path.exists(noisyspeech_dir):
os.makedirs(noisyspeech_dir)
clean_proc_dir = os.path.join(
os.path.dirname(__file__), f"CleanSpeech_{name}ing"
)
if not os.path.exists(clean_proc_dir):
os.makedirs(clean_proc_dir)
noise_proc_dir = os.path.join(
os.path.dirname(__file__), f"NoisySpeech_{name}ing"
)
if not os.path.exists(noise_proc_dir):
os.makedirs(noise_proc_dir)
total_secs = total_hours * 60 * 60
total_samples = int(total_secs * fs)
audio_length = int(audio_length * fs)
SNR = np.linspace(snr_lower, snr_upper, total_snrlevels)
cleanfilenames = glob.glob(os.path.join(clean_dir, audioformat))
if cfg["noise_types_excluded"] == "None":
noisefilenames = glob.glob(os.path.join(noise_dir, audioformat))
else:
filestoexclude = cfg["noise_types_excluded"].split(",")
noisefilenames = glob.glob(os.path.join(noise_dir, audioformat))
for i in range(len(filestoexclude)):
noisefilenames = [
fn
for fn in noisefilenames
if not os.path.basename(fn).startswith(filestoexclude[i])
]
filecounter = 0
num_samples = 0
while num_samples < total_samples:
idx_s = np.random.randint(0, np.size(cleanfilenames))
clean, fs = audioread(cleanfilenames[idx_s])
if len(clean) > audio_length:
clean = clean
else:
while len(clean) <= audio_length:
idx_s = idx_s + 1
if idx_s >= np.size(cleanfilenames) - 1:
idx_s = np.random.randint(0, np.size(cleanfilenames))
newclean, fs = audioread(cleanfilenames[idx_s])
cleanconcat = np.append(
clean, np.zeros(int(fs * silence_length))
)
clean = np.append(cleanconcat, newclean)
idx_n = np.random.randint(0, np.size(noisefilenames))
noise, fs = audioread(noisefilenames[idx_n])
if len(noise) >= len(clean):
noise = noise[0 : len(clean)]
else:
while len(noise) <= len(clean):
idx_n = idx_n + 1
if idx_n >= np.size(noisefilenames) - 1:
idx_n = np.random.randint(0, np.size(noisefilenames))
newnoise, fs = audioread(noisefilenames[idx_n])
noiseconcat = np.append(
noise, np.zeros(int(fs * silence_length))
)
noise = np.append(noiseconcat, newnoise)
noise = noise[0 : len(clean)]
filecounter = filecounter + 1
for i in range(np.size(SNR)):
clean_snr, noise_snr, noisy_snr = snr_mixer(
clean=clean, noise=noise, snr=SNR[i]
)
noisyfilename = (
"noisy"
+ str(filecounter)
+ "_SNRdb_"
+ str(SNR[i])
+ "_clnsp"
+ str(filecounter)
+ ".wav"
)
cleanfilename = "clnsp" + str(filecounter) + ".wav"
noisefilename = (
"noisy" + str(filecounter) + "_SNRdb_" + str(SNR[i]) + ".wav"
)
noisypath = os.path.join(noisyspeech_dir, noisyfilename)
cleanpath = os.path.join(clean_proc_dir, cleanfilename)
noisepath = os.path.join(noise_proc_dir, noisefilename)
audiowrite(noisy_snr, fs, noisypath, norm=False)
audiowrite(clean_snr, fs, cleanpath, norm=False)
audiowrite(noise_snr, fs, noisepath, norm=False)
num_samples = num_samples + len(noisy_snr)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Configurations: read noisyspeech_synthesizer.cfg
parser.add_argument(
"--cfg",
default="noisyspeech_synthesizer.cfg",
help="Read noisyspeech_synthesizer.cfg for all the details",
)
parser.add_argument("--cfg_str", type=str, default="noisy_speech")
args = parser.parse_args()
cfgpath = os.path.join(os.path.dirname(__file__), args.cfg)
assert os.path.exists(cfgpath), f"No configuration file as [{cfgpath}]"
cfg = CP.ConfigParser()
cfg._interpolation = CP.ExtendedInterpolation()
cfg.read(cfgpath)
main(cfg._sections[args.cfg_str])

338
notebooks/Custom_model_training.ipynb vendored Normal file
View File

@ -0,0 +1,338 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "ccd61d5c",
"metadata": {},
"source": [
"## Custom model training using mayavoz [advanced]\n",
"\n",
"In this tutorial, we will cover advanced usages and customizations for training your own speecg enhancement model. \n",
"\n",
" - [Data preparation using MayaDataset](#dataprep)\n",
" - [Model customization](#modelcustom)\n",
" - [callbacks & LR schedulers](#callbacks)\n",
" - [Model training & testing](#train)\n"
]
},
{
"cell_type": "markdown",
"id": "726c320f",
"metadata": {},
"source": [
"- **install mayavoz**"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c987c799",
"metadata": {},
"outputs": [],
"source": [
"! pip install -q mayavoz"
]
},
{
"cell_type": "markdown",
"id": "8ff9857b",
"metadata": {},
"source": [
"<div id=\"dataprep\"></div>\n",
"\n",
"### Data preparation\n",
"\n",
"`Files` is a dataclass that wraps and holds train/test paths togethor. There are usually one folder each for clean and noisy data. These paths must be relative to a `root_dir` where all these directories reside. For example\n",
"\n",
"```\n",
"- VCTK/\n",
" |__ clean_train_wav/\n",
" |__ noisy_train_wav/\n",
" |__ clean_test_wav/\n",
" |__ noisy_test_wav/\n",
" \n",
"```"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "64cbc0c8",
"metadata": {},
"outputs": [],
"source": [
"from mayavoz.utils import Files\n",
"file = Files(train_clean=\"clean_train_wav\",\n",
" train_noisy=\"noisy_train_wav\",\n",
" test_clean=\"clean_test_wav\",\n",
" test_noisy=\"noisy_test_wav\")\n",
"root_dir = \"VCTK\""
]
},
{
"cell_type": "markdown",
"id": "2d324bd1",
"metadata": {},
"source": [
"- `name`: name of the dataset. \n",
"- `duration`: control the duration of each audio instance fed into your model.\n",
"- `stride` is used if set to move the sliding window.\n",
"- `sampling_rate`: desired sampling rate for audio\n",
"- `batch_size`: model batch size\n",
"- `min_valid_minutes`: minimum validation in minutes. Validation is automatically selected from training set. (exclusive users).\n",
"- `matching_function`: there are two types of mapping functions.\n",
" - `one_to_one` : In this one clean file will only have one corresponding noisy file. For example Valentini datasets\n",
" - `one_to_many` : In this one clean file will only have one corresponding noisy file. For example MS-SNSD dataset.\n"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "6834941d",
"metadata": {},
"outputs": [],
"source": [
"name = \"vctk\"\n",
"duration : 4.5\n",
"stride : 2.0\n",
"sampling_rate : 16000\n",
"min_valid_minutes : 20.0\n",
"batch_size : 32\n",
"matching_function : \"one_to_one\"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d08c6bf8",
"metadata": {},
"outputs": [],
"source": [
"from mayavoz.dataset import MayaDataset\n",
"dataset = MayaDataset(\n",
" name=name,\n",
" root_dir=root_dir,\n",
" files=files,\n",
" duration=duration,\n",
" stride=stride,\n",
" sampling_rate=sampling_rate,\n",
" batch_size=batch_size,\n",
" min_valid_minutes=min_valid_minutes,\n",
" matching_function=matching_function\n",
" )"
]
},
{
"cell_type": "markdown",
"id": "5b315bde",
"metadata": {},
"source": [
"Now your custom dataloader is ready!"
]
},
{
"cell_type": "markdown",
"id": "01548fe5",
"metadata": {},
"source": [
"<div id=\"modelcustom\"></div>\n",
"\n",
"### Model Customization\n",
"Now, this is very easy. \n",
"\n",
"- Import the preferred model from `mayavoz.models`. Currently 3 models are implemented.\n",
" - `WaveUnet`\n",
" - `Demucs`\n",
" - `DCCRN`\n",
"- Each of model hyperparameters such as depth,kernel_size,stride etc can be controlled by you. Just check the parameters and pass it to as required.\n",
"- `sampling_rate`: sampling rate (should be equal to dataset sampling rate)\n",
"- `dataset`: mayavoz dataset object as prepared earlier.\n",
"- `loss` : model loss. Multiple loss functions are available.\n",
"\n",
" \n",
" \n",
"you can pass one (as string)/more (as list of strings) of these loss functions as per your requirements. For example, model will automatically calculate loss as average of `mae` and `mse` if you pass loss as `[\"mae\",\"mse\"]`. Available loss functions are `mse`,`mae`,`si-snr`.\n",
"\n",
"mayavoz can accept **custom loss functions**. It should be of the form.\n",
"```\n",
"class your_custom_loss(nn.Module):\n",
" def __init__(self,**kwargs):\n",
" self.higher_better = False ## loss minimization direction\n",
" self.name = \"your_loss_name\" ## loss name logging \n",
" ...\n",
" def forward(self,prediction, target):\n",
" loss = ....\n",
" return loss\n",
" \n",
"```\n",
"\n",
"- metrics : validation metrics. Available options `mae`,`mse`,`si-sdr`,`si-sdr`,`pesq`,`stoi`. One or more can be used.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b36b457c",
"metadata": {},
"outputs": [],
"source": [
"from mayavoz.models import Demucs\n",
"model = Demucs(\n",
" sampling_rate=16000,\n",
" dataset=dataset,\n",
" loss=[\"mae\"],\n",
" metrics=[\"stoi\",\"pesq\"])\n"
]
},
{
"cell_type": "markdown",
"id": "1523d638",
"metadata": {},
"source": [
"<div id=\"callbacks\"></div>\n",
"\n",
"### learning rate schedulers and callbacks\n",
"Here I am using `ReduceLROnPlateau`"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "8de6931c",
"metadata": {},
"outputs": [],
"source": [
"from torch.optim.lr_scheduler import ReduceLROnPlateau\n",
"\n",
"def configure_optimizers(self):\n",
" optimizer = instantiate(\n",
" config.optimizer,\n",
" lr=parameters.get(\"lr\"),\n",
" params=self.parameters(),\n",
" )\n",
" scheduler = ReduceLROnPlateau(\n",
" optimizer=optimizer,\n",
" mode=direction,\n",
" factor=parameters.get(\"ReduceLr_factor\", 0.1),\n",
" verbose=True,\n",
" min_lr=parameters.get(\"min_lr\", 1e-6),\n",
" patience=parameters.get(\"ReduceLr_patience\", 3),\n",
" )\n",
" return {\n",
" \"optimizer\": optimizer,\n",
" \"lr_scheduler\": scheduler,\n",
" \"monitor\": f'valid_{parameters.get(\"ReduceLr_monitor\", \"loss\")}',\n",
" }\n",
"\n",
"\n",
"model.configure_optimizers = MethodType(configure_optimizers, model)"
]
},
{
"cell_type": "markdown",
"id": "2f7b5af5",
"metadata": {},
"source": [
"you can use any number of callbacks and pass it directly to pytorch lightning trainer. Here I am using only `ModelCheckpoint`"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "6f6b62a1",
"metadata": {},
"outputs": [],
"source": [
"callbacks = []\n",
"direction = model.valid_monitor ## min or max \n",
"checkpoint = ModelCheckpoint(\n",
" dirpath=\"./model\",\n",
" filename=f\"model_filename\",\n",
" monitor=\"valid_loss\",\n",
" verbose=False,\n",
" mode=direction,\n",
" every_n_epochs=1,\n",
" )\n",
"callbacks.append(checkpoint)"
]
},
{
"cell_type": "markdown",
"id": "f3534445",
"metadata": {},
"source": [
"<div id=\"train\"></div>\n",
"\n",
"\n",
"### Train"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "3dc0348b",
"metadata": {},
"outputs": [],
"source": [
"import pytorch_lightning as pl\n",
"trainer = plt.Trainer(max_epochs=1,callbacks=callbacks,accelerator=\"gpu\")\n",
"trainer.fit(model)\n"
]
},
{
"cell_type": "markdown",
"id": "56dcfec1",
"metadata": {},
"source": [
"- Test your model agaist test dataset"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "63851feb",
"metadata": {},
"outputs": [],
"source": [
"trainer.test(model)"
]
},
{
"cell_type": "markdown",
"id": "4d3f5350",
"metadata": {},
"source": [
"**Hurray! you have your speech enhancement model trained and tested.**\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "10d630e8",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "enhancer",
"language": "python",
"name": "enhancer"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.13"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

597
notebooks/Getting_started.ipynb vendored Normal file

File diff suppressed because one or more lines are too long

View File

@ -2,6 +2,7 @@
line-length = 80 line-length = 80
target-version = ['py38'] target-version = ['py38']
exclude = ''' exclude = '''
( (
/( /(
\.eggs # exclude a few common directories in the \.eggs # exclude a few common directories in the
@ -9,9 +10,6 @@ exclude = '''
| \.mypy_cache | \.mypy_cache
| \.tox | \.tox
| \.venv | \.venv
| noisyspeech_synthesizer.py
| noisyspeech_synthesizer.cfg
)/ )/
) )
''' '''

View File

@ -0,0 +1,120 @@
import os
from types import MethodType
import hydra
from hydra.utils import instantiate
from omegaconf import DictConfig, OmegaConf
from pytorch_lightning.callbacks import (
EarlyStopping,
LearningRateMonitor,
ModelCheckpoint,
)
from pytorch_lightning.loggers import MLFlowLogger
from torch.optim.lr_scheduler import ReduceLROnPlateau
# from torch_audiomentations import Compose, Shift
os.environ["HYDRA_FULL_ERROR"] = "1"
JOB_ID = os.environ.get("SLURM_JOBID", "0")
@hydra.main(config_path="train_config", config_name="config")
def train(config: DictConfig):
OmegaConf.save(config, "config.yaml")
callbacks = []
logger = MLFlowLogger(
experiment_name=config.mlflow.experiment_name,
run_name=config.mlflow.run_name,
tags={"JOB_ID": JOB_ID},
)
parameters = config.hyperparameters
# apply_augmentations = Compose(
# [
# Shift(min_shift=0.5, max_shift=1.0, shift_unit="seconds", p=0.5),
# ]
# )
dataset = instantiate(config.dataset, augmentations=None)
model = instantiate(
config.model,
dataset=dataset,
lr=parameters.get("lr"),
loss=parameters.get("loss"),
metric=parameters.get("metric"),
)
direction = model.valid_monitor
checkpoint = ModelCheckpoint(
dirpath="./model",
filename=f"model_{JOB_ID}",
monitor="valid_loss",
verbose=False,
mode=direction,
every_n_epochs=1,
)
callbacks.append(checkpoint)
callbacks.append(LearningRateMonitor(logging_interval="epoch"))
if parameters.get("Early_stop", False):
early_stopping = EarlyStopping(
monitor="val_loss",
mode=direction,
min_delta=0.0,
patience=parameters.get("EarlyStopping_patience", 10),
strict=True,
verbose=False,
)
callbacks.append(early_stopping)
def configure_optimizers(self):
optimizer = instantiate(
config.optimizer,
lr=parameters.get("lr"),
params=self.parameters(),
)
scheduler = ReduceLROnPlateau(
optimizer=optimizer,
mode=direction,
factor=parameters.get("ReduceLr_factor", 0.1),
verbose=True,
min_lr=parameters.get("min_lr", 1e-6),
patience=parameters.get("ReduceLr_patience", 3),
)
return {
"optimizer": optimizer,
"lr_scheduler": scheduler,
"monitor": f'valid_{parameters.get("ReduceLr_monitor", "loss")}',
}
model.configure_optimizers = MethodType(configure_optimizers, model)
trainer = instantiate(config.trainer, logger=logger, callbacks=callbacks)
trainer.fit(model)
trainer.test(model)
logger.experiment.log_artifact(
logger.run_id, f"{trainer.default_root_dir}/config.yaml"
)
saved_location = os.path.join(
trainer.default_root_dir, "model", f"model_{JOB_ID}.ckpt"
)
if os.path.isfile(saved_location):
logger.experiment.log_artifact(logger.run_id, saved_location)
logger.experiment.log_param(
logger.run_id,
"num_train_steps_per_epoch",
dataset.train__len__() / dataset.batch_size,
)
logger.experiment.log_param(
logger.run_id,
"num_valid_steps_per_epoch",
dataset.val__len__() / dataset.batch_size,
)
if __name__ == "__main__":
train()

View File

@ -0,0 +1,7 @@
defaults:
- model : Demucs
- dataset : MS-SNSD
- optimizer : Adam
- hyperparameters : default
- trainer : default
- mlflow : experiment

View File

@ -0,0 +1,13 @@
_target_: mayavoz.data.dataset.MayaDataset
name : MS-SDSD
root_dir : /Users/shahules/Myprojects/MS-SNSD
duration : 1.5
stride : 1
sampling_rate: 16000
batch_size: 32
min_valid_minutes: 25
files:
train_clean : CleanSpeech_training
test_clean : CleanSpeech_training
train_noisy : NoisySpeech_training
test_noisy : NoisySpeech_training

View File

@ -1,7 +1,7 @@
loss : mse loss : si-snr
metric : [stoi,pesq,si-sdr] metric : [stoi,pesq]
lr : 0.001 lr : 0.001
ReduceLr_patience : 10 ReduceLr_patience : 10
ReduceLr_factor : 0.5 ReduceLr_factor : 0.5
min_lr : 0.00 min_lr : 0.000001
EarlyStopping_factor : 10 EarlyStopping_factor : 10

View File

@ -0,0 +1,2 @@
experiment_name : shahules/mayavoz
run_name : Demucs + Vtck with stride + augmentations

View File

@ -0,0 +1,25 @@
_target_: mayavoz.models.dccrn.DCCRN
num_channels: 1
sampling_rate : 16000
complex_lstm : True
complex_norm : True
complex_relu : True
masking_mode : True
encoder_decoder:
initial_output_channels : 32
depth : 6
kernel_size : 5
growth_factor : 2
stride : 2
padding : 2
output_padding : 1
lstm:
num_layers : 2
hidden_size : 256
stft:
window_len : 400
hop_size : 100
nfft : 512

View File

@ -0,0 +1,6 @@
_target_: torch.optim.Adam
lr: 1e-3
betas: [0.9, 0.999]
eps: 1e-08
weight_decay: 0
amsgrad: False

View File

@ -0,0 +1,46 @@
_target_: pytorch_lightning.Trainer
accelerator: gpu
accumulate_grad_batches: 1
amp_backend: native
auto_lr_find: True
auto_scale_batch_size: False
auto_select_gpus: True
benchmark: False
check_val_every_n_epoch: 1
detect_anomaly: False
deterministic: False
devices: 2
enable_checkpointing: True
enable_model_summary: True
enable_progress_bar: True
fast_dev_run: False
gpus: null
gradient_clip_val: 0
gradient_clip_algorithm: norm
ipus: null
limit_predict_batches: 1.0
limit_test_batches: 1.0
limit_train_batches: 1.0
limit_val_batches: 1.0
log_every_n_steps: 50
max_epochs: 200
max_steps: -1
max_time: null
min_epochs: 1
min_steps: null
move_metrics_to_cpu: False
multiple_trainloader_mode: max_size_cycle
num_nodes: 1
num_processes: 1
num_sanity_val_steps: 2
overfit_batches: 0.0
precision: 32
profiler: null
reload_dataloaders_every_n_epochs: 0
replace_sampler_ddp: True
strategy: ddp
sync_batchnorm: False
tpu_cores: null
track_grad_norm: -1
val_check_interval: 1.0
weights_save_path: null

View File

@ -0,0 +1,2 @@
_target_: pytorch_lightning.Trainer
fast_dev_run: True

View File

@ -0,0 +1,120 @@
import os
from types import MethodType
import hydra
from hydra.utils import instantiate
from omegaconf import DictConfig, OmegaConf
from pytorch_lightning.callbacks import (
EarlyStopping,
LearningRateMonitor,
ModelCheckpoint,
)
from pytorch_lightning.loggers import MLFlowLogger
from torch.optim.lr_scheduler import ReduceLROnPlateau
# from torch_audiomentations import Compose, Shift
os.environ["HYDRA_FULL_ERROR"] = "1"
JOB_ID = os.environ.get("SLURM_JOBID", "0")
@hydra.main(config_path="train_config", config_name="config")
def train(config: DictConfig):
OmegaConf.save(config, "config.yaml")
callbacks = []
logger = MLFlowLogger(
experiment_name=config.mlflow.experiment_name,
run_name=config.mlflow.run_name,
tags={"JOB_ID": JOB_ID},
)
parameters = config.hyperparameters
# apply_augmentations = Compose(
# [
# Shift(min_shift=0.5, max_shift=1.0, shift_unit="seconds", p=0.5),
# ]
# )
dataset = instantiate(config.dataset, augmentations=None)
model = instantiate(
config.model,
dataset=dataset,
lr=parameters.get("lr"),
loss=parameters.get("loss"),
metric=parameters.get("metric"),
)
direction = model.valid_monitor
checkpoint = ModelCheckpoint(
dirpath="./model",
filename=f"model_{JOB_ID}",
monitor="valid_loss",
verbose=False,
mode=direction,
every_n_epochs=1,
)
callbacks.append(checkpoint)
callbacks.append(LearningRateMonitor(logging_interval="epoch"))
if parameters.get("Early_stop", False):
early_stopping = EarlyStopping(
monitor="val_loss",
mode=direction,
min_delta=0.0,
patience=parameters.get("EarlyStopping_patience", 10),
strict=True,
verbose=False,
)
callbacks.append(early_stopping)
def configure_optimizers(self):
optimizer = instantiate(
config.optimizer,
lr=parameters.get("lr"),
params=self.parameters(),
)
scheduler = ReduceLROnPlateau(
optimizer=optimizer,
mode=direction,
factor=parameters.get("ReduceLr_factor", 0.1),
verbose=True,
min_lr=parameters.get("min_lr", 1e-6),
patience=parameters.get("ReduceLr_patience", 3),
)
return {
"optimizer": optimizer,
"lr_scheduler": scheduler,
"monitor": f'valid_{parameters.get("ReduceLr_monitor", "loss")}',
}
model.configure_optimizers = MethodType(configure_optimizers, model)
trainer = instantiate(config.trainer, logger=logger, callbacks=callbacks)
trainer.fit(model)
trainer.test(model)
logger.experiment.log_artifact(
logger.run_id, f"{trainer.default_root_dir}/config.yaml"
)
saved_location = os.path.join(
trainer.default_root_dir, "model", f"model_{JOB_ID}.ckpt"
)
if os.path.isfile(saved_location):
logger.experiment.log_artifact(logger.run_id, saved_location)
logger.experiment.log_param(
logger.run_id,
"num_train_steps_per_epoch",
dataset.train__len__() / dataset.batch_size,
)
logger.experiment.log_param(
logger.run_id,
"num_valid_steps_per_epoch",
dataset.val__len__() / dataset.batch_size,
)
if __name__ == "__main__":
train()

View File

@ -0,0 +1,7 @@
defaults:
- model : Demucs
- dataset : MS-SNSD
- optimizer : Adam
- hyperparameters : default
- trainer : default
- mlflow : experiment

View File

@ -0,0 +1,13 @@
_target_: mayavoz.data.dataset.MayaDataset
name : MS-SDSD
root_dir : /Users/shahules/Myprojects/MS-SNSD
duration : 5
stride : 1
sampling_rate: 16000
batch_size: 32
min_valid_minutes: 25
files:
train_clean : CleanSpeech_training
test_clean : CleanSpeech_training
train_noisy : NoisySpeech_training
test_noisy : NoisySpeech_training

View File

@ -0,0 +1,7 @@
loss : mae
metric : [stoi,pesq]
lr : 0.0003
ReduceLr_patience : 10
ReduceLr_factor : 0.5
min_lr : 0.000001
EarlyStopping_factor : 10

View File

@ -0,0 +1,2 @@
experiment_name : shahules/mayavoz
run_name : demucs-ms-snsd

View File

@ -0,0 +1,16 @@
_target_: mayavoz.models.demucs.Demucs
num_channels: 1
resample: 4
sampling_rate : 16000
encoder_decoder:
depth: 4
initial_output_channels: 64
kernel_size: 8
stride: 4
growth_factor: 2
glu: True
lstm:
bidirectional: False
num_layers: 2

View File

@ -0,0 +1,6 @@
_target_: torch.optim.Adam
lr: 1e-3
betas: [0.9, 0.999]
eps: 1e-08
weight_decay: 0
amsgrad: False

View File

@ -0,0 +1,46 @@
_target_: pytorch_lightning.Trainer
accelerator: gpu
accumulate_grad_batches: 1
amp_backend: native
auto_lr_find: True
auto_scale_batch_size: False
auto_select_gpus: True
benchmark: False
check_val_every_n_epoch: 1
detect_anomaly: False
deterministic: False
devices: 2
enable_checkpointing: True
enable_model_summary: True
enable_progress_bar: True
fast_dev_run: False
gpus: null
gradient_clip_val: 0
gradient_clip_algorithm: norm
ipus: null
limit_predict_batches: 1.0
limit_test_batches: 1.0
limit_train_batches: 1.0
limit_val_batches: 1.0
log_every_n_steps: 50
max_epochs: 200
max_steps: -1
max_time: null
min_epochs: 1
min_steps: null
move_metrics_to_cpu: False
multiple_trainloader_mode: max_size_cycle
num_nodes: 1
num_processes: 1
num_sanity_val_steps: 2
overfit_batches: 0.0
precision: 32
profiler: null
reload_dataloaders_every_n_epochs: 0
replace_sampler_ddp: True
strategy: ddp
sync_batchnorm: False
tpu_cores: null
track_grad_norm: -1
val_check_interval: 1.0
weights_save_path: null

View File

@ -0,0 +1,2 @@
_target_: pytorch_lightning.Trainer
fast_dev_run: True

View File

@ -0,0 +1,17 @@
### Microsoft Scalable Noisy Speech Dataset (MS-SNSD)
MS-SNSD is a speech datasetthat can scale to arbitrary sizes depending on the number of speakers, noise types, and Speech to Noise Ratio (SNR) levels desired.
### Dataset download & setup
- Follow steps in the official repo [here](https://github.com/microsoft/MS-SNSD) to download and setup the dataset.
**References**
```BibTex
@article{reddy2019scalable,
title={A Scalable Noisy Speech Dataset and Online Subjective Test Framework},
author={Reddy, Chandan KA and Beyrami, Ebrahim and Pool, Jamie and Cutler, Ross and Srinivasan, Sriram and Gehrke, Johannes},
journal={Proc. Interspeech 2019},
pages={1816--1820},
year={2019}
}
```

View File

@ -4,10 +4,16 @@ from types import MethodType
import hydra import hydra
from hydra.utils import instantiate from hydra.utils import instantiate
from omegaconf import DictConfig, OmegaConf from omegaconf import DictConfig, OmegaConf
from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.callbacks import (
EarlyStopping,
LearningRateMonitor,
ModelCheckpoint,
)
from pytorch_lightning.loggers import MLFlowLogger from pytorch_lightning.loggers import MLFlowLogger
from torch.optim.lr_scheduler import ReduceLROnPlateau from torch.optim.lr_scheduler import ReduceLROnPlateau
# from torch_audiomentations import Compose, Shift
os.environ["HYDRA_FULL_ERROR"] = "1" os.environ["HYDRA_FULL_ERROR"] = "1"
JOB_ID = os.environ.get("SLURM_JOBID", "0") JOB_ID = os.environ.get("SLURM_JOBID", "0")
@ -25,8 +31,13 @@ def main(config: DictConfig):
) )
parameters = config.hyperparameters parameters = config.hyperparameters
# apply_augmentations = Compose(
# [
# Shift(min_shift=0.5, max_shift=1.0, shift_unit="seconds", p=0.5),
# ]
# )
dataset = instantiate(config.dataset) dataset = instantiate(config.dataset, augmentations=None)
model = instantiate( model = instantiate(
config.model, config.model,
dataset=dataset, dataset=dataset,
@ -45,6 +56,8 @@ def main(config: DictConfig):
every_n_epochs=1, every_n_epochs=1,
) )
callbacks.append(checkpoint) callbacks.append(checkpoint)
callbacks.append(LearningRateMonitor(logging_interval="epoch"))
if parameters.get("Early_stop", False): if parameters.get("Early_stop", False):
early_stopping = EarlyStopping( early_stopping = EarlyStopping(
monitor="val_loss", monitor="val_loss",
@ -56,11 +69,11 @@ def main(config: DictConfig):
) )
callbacks.append(early_stopping) callbacks.append(early_stopping)
def configure_optimizer(self): def configure_optimizers(self):
optimizer = instantiate( optimizer = instantiate(
config.optimizer, config.optimizer,
lr=parameters.get("lr"), lr=parameters.get("lr"),
parameters=self.parameters(), params=self.parameters(),
) )
scheduler = ReduceLROnPlateau( scheduler = ReduceLROnPlateau(
optimizer=optimizer, optimizer=optimizer,
@ -70,9 +83,13 @@ def main(config: DictConfig):
min_lr=parameters.get("min_lr", 1e-6), min_lr=parameters.get("min_lr", 1e-6),
patience=parameters.get("ReduceLr_patience", 3), patience=parameters.get("ReduceLr_patience", 3),
) )
return {"optimizer": optimizer, "lr_scheduler": scheduler} return {
"optimizer": optimizer,
"lr_scheduler": scheduler,
"monitor": f'valid_{parameters.get("ReduceLr_monitor", "loss")}',
}
model.configure_parameters = MethodType(configure_optimizer, model) model.configure_optimizers = MethodType(configure_optimizers, model)
trainer = instantiate(config.trainer, logger=logger, callbacks=callbacks) trainer = instantiate(config.trainer, logger=logger, callbacks=callbacks)
trainer.fit(model) trainer.fit(model)

View File

@ -0,0 +1,7 @@
defaults:
- model : Demucs
- dataset : Vctk
- optimizer : Adam
- hyperparameters : default
- trainer : default
- mlflow : experiment

View File

@ -0,0 +1,13 @@
_target_: mayavoz.data.dataset.MayaDataset
name : vctk
root_dir : /scratch/c.sistc3/DS_10283_2791
duration : 4.5
stride : 0.5
sampling_rate: 16000
batch_size: 32
min_valid_minutes : 25
files:
train_clean : clean_trainset_28spk_wav
test_clean : clean_testset_wav
train_noisy : noisy_trainset_28spk_wav
test_noisy : noisy_testset_wav

View File

@ -0,0 +1,8 @@
loss : mae
metric : [stoi,pesq,si-sdr]
lr : 0.0003
Early_stop : False
ReduceLr_patience : 10
ReduceLr_factor : 0.1
min_lr : 0.000001
EarlyStopping_factor : 10

View File

@ -0,0 +1,2 @@
experiment_name : shahules/mayavoz
run_name : baseline

View File

@ -0,0 +1,16 @@
_target_: mayavoz.models.demucs.Demucs
num_channels: 1
resample: 4
sampling_rate : 16000
encoder_decoder:
depth: 4
initial_output_channels: 64
kernel_size: 8
stride: 4
growth_factor: 2
glu: True
lstm:
bidirectional: True
num_layers: 2

View File

@ -0,0 +1,6 @@
_target_: torch.optim.Adam
lr: 1e-3
betas: [0.9, 0.999]
eps: 1e-08
weight_decay: 0
amsgrad: False

View File

@ -2,14 +2,14 @@ _target_: pytorch_lightning.Trainer
accelerator: gpu accelerator: gpu
accumulate_grad_batches: 1 accumulate_grad_batches: 1
amp_backend: native amp_backend: native
auto_lr_find: False auto_lr_find: True
auto_scale_batch_size: False auto_scale_batch_size: False
auto_select_gpus: True auto_select_gpus: True
benchmark: False benchmark: False
check_val_every_n_epoch: 1 check_val_every_n_epoch: 1
detect_anomaly: False detect_anomaly: False
deterministic: False deterministic: False
devices: 2 devices: 1
enable_checkpointing: True enable_checkpointing: True
enable_model_summary: True enable_model_summary: True
enable_progress_bar: True enable_progress_bar: True
@ -22,8 +22,9 @@ limit_predict_batches: 1.0
limit_test_batches: 1.0 limit_test_batches: 1.0
limit_train_batches: 1.0 limit_train_batches: 1.0
limit_val_batches: 1.0 limit_val_batches: 1.0
log_every_n_steps: 100 log_every_n_steps: 50
max_epochs: 250 max_epochs: 200
max_steps: -1
max_time: null max_time: null
min_epochs: 1 min_epochs: 1
min_steps: null min_steps: null

View File

@ -0,0 +1,120 @@
import os
from types import MethodType
import hydra
from hydra.utils import instantiate
from omegaconf import DictConfig, OmegaConf
from pytorch_lightning.callbacks import (
EarlyStopping,
LearningRateMonitor,
ModelCheckpoint,
)
from pytorch_lightning.loggers import MLFlowLogger
from torch.optim.lr_scheduler import ReduceLROnPlateau
# from torch_audiomentations import Compose, Shift
os.environ["HYDRA_FULL_ERROR"] = "1"
JOB_ID = os.environ.get("SLURM_JOBID", "0")
@hydra.main(config_path="train_config", config_name="config")
def main(config: DictConfig):
OmegaConf.save(config, "config_log.yaml")
callbacks = []
logger = MLFlowLogger(
experiment_name=config.mlflow.experiment_name,
run_name=config.mlflow.run_name,
tags={"JOB_ID": JOB_ID},
)
parameters = config.hyperparameters
# apply_augmentations = Compose(
# [
# Shift(min_shift=0.5, max_shift=1.0, shift_unit="seconds", p=0.5),
# ]
# )
dataset = instantiate(config.dataset, augmentations=None)
model = instantiate(
config.model,
dataset=dataset,
lr=parameters.get("lr"),
loss=parameters.get("loss"),
metric=parameters.get("metric"),
)
direction = model.valid_monitor
checkpoint = ModelCheckpoint(
dirpath="./model",
filename=f"model_{JOB_ID}",
monitor="valid_loss",
verbose=False,
mode=direction,
every_n_epochs=1,
)
callbacks.append(checkpoint)
callbacks.append(LearningRateMonitor(logging_interval="epoch"))
if parameters.get("Early_stop", False):
early_stopping = EarlyStopping(
monitor="val_loss",
mode=direction,
min_delta=0.0,
patience=parameters.get("EarlyStopping_patience", 10),
strict=True,
verbose=False,
)
callbacks.append(early_stopping)
def configure_optimizers(self):
optimizer = instantiate(
config.optimizer,
lr=parameters.get("lr"),
params=self.parameters(),
)
scheduler = ReduceLROnPlateau(
optimizer=optimizer,
mode=direction,
factor=parameters.get("ReduceLr_factor", 0.1),
verbose=True,
min_lr=parameters.get("min_lr", 1e-6),
patience=parameters.get("ReduceLr_patience", 3),
)
return {
"optimizer": optimizer,
"lr_scheduler": scheduler,
"monitor": f'valid_{parameters.get("ReduceLr_monitor", "loss")}',
}
model.configure_optimizers = MethodType(configure_optimizers, model)
trainer = instantiate(config.trainer, logger=logger, callbacks=callbacks)
trainer.fit(model)
trainer.test(model)
logger.experiment.log_artifact(
logger.run_id, f"{trainer.default_root_dir}/config_log.yaml"
)
saved_location = os.path.join(
trainer.default_root_dir, "model", f"model_{JOB_ID}.ckpt"
)
if os.path.isfile(saved_location):
logger.experiment.log_artifact(logger.run_id, saved_location)
logger.experiment.log_param(
logger.run_id,
"num_train_steps_per_epoch",
dataset.train__len__() / dataset.batch_size,
)
logger.experiment.log_param(
logger.run_id,
"num_valid_steps_per_epoch",
dataset.val__len__() / dataset.batch_size,
)
if __name__ == "__main__":
main()

View File

@ -0,0 +1,7 @@
defaults:
- model : WaveUnet
- dataset : Vctk
- optimizer : Adam
- hyperparameters : default
- trainer : default
- mlflow : experiment

View File

@ -1,11 +1,11 @@
_target_: enhancer.data.dataset.EnhancerDataset _target_: mayavoz.data.dataset.MayaDataset
name : vctk name : vctk
root_dir : /scratch/c.sistc3/DS_10283_2791 root_dir : /scratch/c.sistc3/DS_10283_2791
duration : 1.5 duration : 2
stride : 1
sampling_rate: 16000 sampling_rate: 16000
batch_size: 256 batch_size: 128
valid_size : 0.05 valid_minutes : 25
files: files:
train_clean : clean_trainset_28spk_wav train_clean : clean_trainset_28spk_wav
test_clean : clean_testset_wav test_clean : clean_testset_wav

View File

@ -0,0 +1,8 @@
loss : mae
metric : [stoi,pesq,si-sdr]
lr : 0.003
ReduceLr_patience : 10
ReduceLr_factor : 0.1
min_lr : 0.000001
EarlyStopping_factor : 10
Early_stop : False

View File

@ -0,0 +1,2 @@
experiment_name : shahules/mayavoz
run_name : baseline

View File

@ -0,0 +1,5 @@
_target_: mayavoz.models.waveunet.WaveUnet
num_channels : 1
depth : 9
initial_output_channels: 24
sampling_rate : 16000

View File

@ -0,0 +1,6 @@
_target_: torch.optim.Adam
lr: 1e-3
betas: [0.9, 0.999]
eps: 1e-08
weight_decay: 0
amsgrad: False

View File

@ -0,0 +1,46 @@
_target_: pytorch_lightning.Trainer
accelerator: gpu
accumulate_grad_batches: 1
amp_backend: native
auto_lr_find: True
auto_scale_batch_size: False
auto_select_gpus: True
benchmark: False
check_val_every_n_epoch: 1
detect_anomaly: False
deterministic: False
devices: 2
enable_checkpointing: True
enable_model_summary: True
enable_progress_bar: True
fast_dev_run: False
gpus: null
gradient_clip_val: 0
gradient_clip_algorithm: norm
ipus: null
limit_predict_batches: 1.0
limit_test_batches: 1.0
limit_train_batches: 1.0
limit_val_batches: 1.0
log_every_n_steps: 50
max_epochs: 200
max_steps: -1
max_time: null
min_epochs: 1
min_steps: null
move_metrics_to_cpu: False
multiple_trainloader_mode: max_size_cycle
num_nodes: 1
num_processes: 1
num_sanity_val_steps: 2
overfit_batches: 0.0
precision: 32
profiler: null
reload_dataloaders_every_n_epochs: 0
replace_sampler_ddp: True
strategy: ddp
sync_batchnorm: False
tpu_cores: null
track_grad_norm: -1
val_check_interval: 1.0
weights_save_path: null

View File

@ -0,0 +1,2 @@
_target_: pytorch_lightning.Trainer
fast_dev_run: True

View File

@ -0,0 +1,12 @@
## Valentini dataset
Clean and noisy parallel speech database. The database was designed to train and test speech enhancement methods that operate at 48kHz. A more detailed description can be found in the papers associated with the database.[official page](https://datashare.ed.ac.uk/handle/10283/2791)
**References**
```BibTex
@misc{
title={Noisy speech database for training speech enhancement algorithms and TTS models},
author={Valentini-Botinhao, Cassia}, year={2017},
doi=https://doi.org/10.7488/ds/2117,
}
```

View File

@ -1,19 +1,19 @@
# torch>=1.12.1 boto3>=1.24.86
# torchaudio>=0.12.1 huggingface-hub>=0.10.0
# tqdm>=4.64.1 hydra-core>=1.2.0
configparser joblib>=1.2.0
# boto3>=1.24.86 librosa>=0.9.2
# huggingface-hub>=0.10.0 mlflow>=1.28.0
# hydra-core>=1.2.0
# joblib>=1.2.0
# librosa>=0.9.2
# mlflow>=1.29.0
numpy>=1.23.3 numpy>=1.23.3
# pesq==0.0.4 pesq==0.0.4
# protobuf>=3.19.6 protobuf>=3.19.6
# pystoi==0.3.3 pystoi==0.3.3
# pytest-lazy-fixture>=0.6.3 pytest-lazy-fixture>=0.6.3
# pytorch-lightning>=1.7.7 pytorch-lightning>=1.7.7
# scikit-learn>=1.1.2 scikit-learn>=1.1.2
scipy>=1.9.1 scipy>=1.9.1
soundfile>=0.11.0 soundfile>=0.11.0
torch>=1.12.1
torch-audiomentations==0.11.0
torchaudio>=0.12.1
tqdm>=4.64.1

View File

@ -3,7 +3,7 @@
# http://setuptools.readthedocs.io/en/latest/setuptools.html#configuring-setup-using-setup-cfg-files # http://setuptools.readthedocs.io/en/latest/setuptools.html#configuring-setup-using-setup-cfg-files
[metadata] [metadata]
name = enhancer name = mayavoz
description = Deep learning for speech enhacement description = Deep learning for speech enhacement
author = Shahul Ess author = Shahul Ess
author-email = shahules786@gmail.com author-email = shahules786@gmail.com
@ -53,7 +53,7 @@ cli =
[options.entry_points] [options.entry_points]
console_scripts = console_scripts =
enhancer-train=enhancer.cli.train:train mayavoz-train=mayavoz.cli.train:train
[test] [test]
# py.test options when running `python setup.py test` # py.test options when running `python setup.py test`
@ -66,7 +66,7 @@ extras = True
# e.g. --cov-report html (or xml) for html/xml output or --junitxml junit.xml # e.g. --cov-report html (or xml) for html/xml output or --junitxml junit.xml
# in order to write a coverage file that can be read by Jenkins. # in order to write a coverage file that can be read by Jenkins.
addopts = addopts =
--cov enhancer --cov-report term-missing --cov mayavoz --cov-report term-missing
--verbose --verbose
norecursedirs = norecursedirs =
dist dist
@ -98,3 +98,7 @@ exclude =
build build
dist dist
.eggs .eggs
[options.data_files]
. = requirements.txt
_ = version.txt

View File

@ -33,15 +33,15 @@ elif sha != "Unknown":
version += "+" + sha[:7] version += "+" + sha[:7]
print("-- Building version " + version) print("-- Building version " + version)
version_path = ROOT_DIR / "enhancer" / "version.py" version_path = ROOT_DIR / "mayavoz" / "version.py"
with open(version_path, "w") as f: with open(version_path, "w") as f:
f.write("__version__ = '{}'\n".format(version)) f.write("__version__ = '{}'\n".format(version))
if __name__ == "__main__": if __name__ == "__main__":
setup( setup(
name="enhancer", name="mayavoz",
namespace_packages=["enhancer"], namespace_packages=["mayavoz"],
version=version, version=version,
packages=find_packages(), packages=find_packages(),
install_requires=requirements, install_requires=requirements,

View File

@ -1,13 +0,0 @@
#!/bin/bash
set -e
echo "Loading Anaconda Module"
module load anaconda
echo "Creating Virtual Environment"
conda env create -f environment.yml || conda env update -f environment.yml
source activate enhancer
echo "copying files"
# cp /scratch/$USER/TIMIT/.* /deep-transcriber

View File

@ -1,7 +1,7 @@
import pytest import pytest
import torch import torch
from enhancer.loss import mean_absolute_error, mean_squared_error from mayavoz.loss import mean_absolute_error, mean_squared_error
loss_functions = [mean_absolute_error(), mean_squared_error()] loss_functions = [mean_absolute_error(), mean_squared_error()]

Some files were not shown because too many files have changed in this diff Show More