Compare commits

...

85 Commits

Author SHA1 Message Date
Shahul ES 7133670252
Merge pull request #46 from izam-mohammed/main
Updated conv.py
2023-02-08 16:40:35 +05:30
Izam Mohammed 40031ab084
updated conv.py with changing imag variable 2023-01-24 07:12:45 +05:30
Izam Mohammed 379800d3f6
Merge branch 'shahules786:main' into main 2023-01-24 06:57:04 +05:30
Shahul ES f21fa24f0e
Merge pull request #43 from izam-mohammed/izam-dev-1
Corrected an error in CONTRIBUTING.md file
2023-01-11 23:03:27 +05:30
Izam Mohammed afa89749ad
Merge pull request #1 from izam-mohammed/izam-dev-1
Corrected an error in CONTRIBUTING.md file
2023-01-11 12:52:13 +05:30
Izam Mohammed e6fb143c8f
Corrected an error in CONTRIBUTING.md file 2023-01-11 12:51:32 +05:30
Shahul ES cd7c008d34
update Readme 2022-12-19 16:15:40 +05:30
Shahul ES 287df5bff4
Merge pull request #35 from shahules786/dev
add contribution guidelines
2022-12-07 16:21:01 +05:30
shahules786 b56cdf877a add contribution guidelines 2022-12-07 16:14:30 +05:30
Shahul ES 915574bd30
Merge pull request #31 from shahules786/dev
update readme
2022-12-02 12:48:37 +05:30
shahules786 c0cdb9e6e9 update readme 2022-12-02 12:33:28 +05:30
Shahul ES d57ef2c10a
Merge pull request #30 from shahules786/dev
Update documentations
2022-12-01 10:24:38 +05:30
shahules786 0faa06027f overlap-add 2022-12-01 10:16:10 +05:30
shahules786 c88a87e109 readme 2022-12-01 10:15:39 +05:30
Shahul ES fe82b398ee
rename owner 2022-12-01 09:37:43 +05:30
Shahul ES a47b93b699
Merge pull request #28 from shahules786/dev
Update Readme
2022-11-24 16:18:45 +05:30
shahules786 763ea60a52 Merge branch 'dev' of https://github.com/shahules786/enhancer into dev 2022-11-24 15:57:19 +05:30
shahules786 0bca3f9949 test pretrained 2022-11-24 15:56:42 +05:30
Shahul ES 31ab30be04
Update README.md 2022-11-24 15:51:18 +05:30
Shahul ES dd0b060e09
Update ci.yaml 2022-11-24 15:41:09 +05:30
Shahul ES 1d2c5eee55
Update Readme 2022-11-24 15:38:16 +05:30
Shahul ES f2111321bf
Merge pull request #27 from shahules786/dev
Rename dataset
2022-11-24 12:30:23 +05:30
shahules786 25139d7d3f add MS-SNSD recipes 2022-11-24 12:15:19 +05:30
shahules786 b343ea3610 rmv cli 2022-11-24 11:57:47 +05:30
shahules786 249c535921 rmv cli 2022-11-24 11:57:04 +05:30
shahules786 2de2c715ed rename dataset 2022-11-24 11:54:27 +05:30
shahules786 612c022d24 tests 2022-11-24 11:54:09 +05:30
shahules786 8b3bc67529 readme 2022-11-24 11:53:55 +05:30
shahules786 9187a940e7 recipes 2022-11-24 11:10:50 +05:30
shahules786 18c95cf219 cli 2022-11-24 11:10:29 +05:30
shahules786 502cad0984 notebooks 2022-11-24 11:10:05 +05:30
Shahul ES dd27de7467
Update .gitattributes 2022-11-23 19:19:43 +05:30
Shahul ES d8d61a231b
Merge pull request #26 from shahules786/dev
Testpypi
2022-11-23 19:18:28 +05:30
shahules786 80320bbf92 downgrade mlflow 2022-11-23 17:44:28 +05:30
shahules786 ceb69a09c3 gitattr 2022-11-23 17:32:13 +05:30
shahules786 60b654a065 update readme 2022-11-23 17:27:43 +05:30
shahules786 22a1f27e63 Merge branch 'main' of https://github.com/shahules786/enhancer into dev 2022-11-23 17:10:51 +05:30
shahules786 65f1924593 setup 2022-11-23 17:10:20 +05:30
shahules786 9525d2491f include files 2022-11-23 17:09:49 +05:30
Shahul ES f94bd22eb6
Merge pull request #25 from shahules786/dev
dev install
2022-11-21 22:04:25 +05:30
shahules786 f1fe1a803a notebooks 2022-11-21 21:43:28 +05:30
Shahul ES 386931d09b
Update README.md 2022-11-15 22:06:48 +05:30
shahules786 9927542713 notebooks 2022-11-15 22:05:39 +05:30
Shahul ES da85de13ad
Merge pull request #24 from shahules786/dev
Minor improvements/bug fixes
2022-11-15 22:03:45 +05:30
shahules786 9ee809a047 rename to train 2022-11-15 21:51:45 +05:30
shahules786 7afe928ee1 relative imports 2022-11-15 21:51:28 +05:30
shahules786 434b44ddc9 minor fixes 2022-11-15 21:51:06 +05:30
shahules786 191c6a7499 add warnings 2022-11-15 21:50:24 +05:30
shahules786 b99ef95719 train config 2022-11-15 21:45:07 +05:30
shahules786 2bfca78caa fix duration 2022-11-15 21:42:02 +05:30
shahules786 003bab91f9 tests 2022-11-15 21:39:47 +05:30
shahules786 d9b817f650 gitignore 2022-11-15 21:39:35 +05:30
shahules786 90fbfbce73 examples 2022-11-15 21:39:18 +05:30
Shahul ES 7c7db84c39
update readme 2022-11-15 15:11:23 +05:30
Shahul ES a4f0fda6a5
Merge pull request #23 from shahules786/dev
rename package
2022-11-15 15:08:06 +05:30
shahules786 8bc63becce rename dataset 2022-11-15 14:33:27 +05:30
shahules786 bfd53937c2 rename to mayamodel 2022-11-15 14:29:04 +05:30
shahules786 ba63c54399 ci-cd 2022-11-14 16:31:51 +05:30
shahules786 12cde1b0ab change save name 2022-11-14 16:30:14 +05:30
shahules786 f8a44f823a fix typo 2022-11-14 16:19:57 +05:30
shahules786 7838e744a9 rename package 2022-11-14 11:37:26 +05:30
shahules786 1abc450ef8 Merge branch 'dev' of https://github.com/shahules786/enhancer into dev 2022-11-14 10:50:05 +05:30
shahules786 4a2865ff03 negate si-snr 2022-11-14 10:48:31 +05:30
Shahul ES 0e664ed371
Update readme 2022-11-10 19:36:02 +05:30
Shahul ES cb6f9c20ed
update readme 2022-11-10 19:30:59 +05:30
Shahul ES 8e4c12b98d
update readme 2022-11-10 17:29:01 +05:30
Shahul ES a0e38c5e5c
Merge pull request #22 from shahules786/dev
Dev
2022-11-10 17:27:31 +05:30
Shahul ES ebba5952e5
Merge pull request #20 from shahules786/dev-recipe
recipes and tutorials
2022-11-10 17:09:27 +05:30
shahules786 69c7a0100c recipes 2022-11-10 16:54:53 +05:30
shahules786 470ec74bcb add license 2022-11-10 16:27:55 +05:30
shahules786 a2e083b315 add cache 2022-11-10 16:01:06 +05:30
shahules786 252d380acc rmv badge: 2022-11-10 13:58:39 +05:30
shahules786 4eff036c1c add cli tutorials 2022-11-10 12:03:59 +05:30
shahules786 d2a7e3c730 add badges 2022-11-10 11:15:32 +05:30
shahules786 3b8551640f add sheilds 2022-11-10 10:52:36 +05:30
Shahul ES 1d366d6096
Merge pull request #21 from shahules786/dev
Merge changes to main
2022-11-10 10:43:12 +05:30
shahules786 d90db16bce remove hawk files 2022-11-10 10:35:50 +05:30
shahules786 e941235ec0 mv coeff to device 2022-11-10 10:34:48 +05:30
shahules786 27ddf0bec9 advanced tutorial 2022-11-09 13:32:27 +05:30
shahules786 bc13fc03bf readme 2022-11-08 17:09:56 +05:30
shahules786 7a502671e2 check github copy 2022-11-08 17:01:27 +05:30
shahules786 6384915e17 recipes 2022-11-08 16:48:20 +05:30
shahules786 94ab778c0b update links 2022-11-08 13:00:11 +05:30
shahules786 ef06786d8c getting started 2022-11-08 12:45:09 +05:30
shahules786 e0fbf55dca add recipes table 2022-11-07 20:03:21 +05:30
101 changed files with 2123 additions and 198 deletions

View File

@ -1,5 +1,5 @@
[flake8] [flake8]
per-file-ignores = __init__.py:F401 per-file-ignores = "mayavoz/model/__init__.py:F401"
ignore = E203, E266, E501, W503 ignore = E203, E266, E501, W503
# line length is intentionally set to 80 here because black uses Bugbear # line length is intentionally set to 80 here because black uses Bugbear
# See https://github.com/psf/black/blob/master/README.md#line-length for more details # See https://github.com/psf/black/blob/master/README.md#line-length for more details

1
.gitattributes vendored Normal file
View File

@ -0,0 +1 @@
notebooks/** linguist-vendored

View File

@ -1,13 +1,13 @@
# This workflow will install Python dependencies, run tests and lint with a variety of Python versions # This workflow will install Python dependencies, run tests and lint with a variety of Python versions
# For more information see: https://help.github.com/actions/language-and-framework-guides/using-python-with-github-actions # For more information see: https://help.github.com/actions/language-and-framework-guides/using-python-with-github-actions
name: Enhancer name: mayavoz
on: on:
push: push:
branches: [ dev ] branches: [ main ]
pull_request: pull_request:
branches: [ dev ] branches: [ main ]
jobs: jobs:
build: build:
runs-on: ubuntu-latest runs-on: ubuntu-latest
@ -40,12 +40,12 @@ jobs:
sudo apt-get install libsndfile1 sudo apt-get install libsndfile1
pip install -r requirements.txt pip install -r requirements.txt
pip install black pytest-cov pip install black pytest-cov
- name: Install enhancer - name: Install mayavoz
run: | run: |
pip install -e .[dev,testing] pip install -e .[dev,testing]
- name: Run black - name: Run black
run: run:
black --check . --exclude enhancer/version.py black --check . --exclude mayavoz/version.py
- name: Test with pytest - name: Test with pytest
run: run:
pytest tests --cov=enhancer/ pytest tests --cov=mayavoz/

4
.gitignore vendored
View File

@ -1,4 +1,8 @@
#local #local
cleaned_my_voice.wav
lightning_logs/
my_voice.wav
pretrained/
*.ckpt *.ckpt
*_local.yaml *_local.yaml
cli/train_config/dataset/Vctk_local.yaml cli/train_config/dataset/Vctk_local.yaml

View File

@ -23,6 +23,7 @@ repos:
hooks: hooks:
- id: flake8 - id: flake8
args: ['--ignore=E203,E501,F811,E712,W503'] args: ['--ignore=E203,E501,F811,E712,W503']
exclude: __init__.py
# Formatting, Whitespace, etc # Formatting, Whitespace, etc
- repo: https://github.com/pre-commit/pre-commit-hooks - repo: https://github.com/pre-commit/pre-commit-hooks

46
CONTRIBUTING.md Normal file
View File

@ -0,0 +1,46 @@
# Contributing
Hi there 👋
If you're reading this I hope that you're looking forward to adding value to Mayavoz. This document will help you to get started with your journey.
## How to get your code in Mayavoz
1. We use git and GitHub.
2. Fork the mayavoz repository (https://github.com/shahules786/mayavoz) on GitHub under your own account. (This creates a copy of mayavoz under your account, and GitHub knows where it came from, and we typically call this “upstream”.)
3. Clone your own mayavoz repository. git clone https://github.com/ <your-account> /mayavoz (This downloads the git repository to your machine, git knows where it came from, and calls it “origin”.)
4. Create a branch for each specific feature you are developing. git checkout -b your-branch-name
5. Make + commit changes. git add files-you-changed ... git commit -m "Short message about what you did"
6. Push the branch to your GitHub repository. git push origin your-branch-name
7. Navigate to GitHub, and create a pull request from your branch to the upstream repository mayavoz/mayavoz, to the “develop” branch.
8. The Pull Request (PR) appears on the upstream repository. Discuss your contribution there. If you push more changes to your branch on GitHub (on your repository), they are added to the PR.
9. When the reviewer is satisfied that the code improves repository quality, they can merge.
Note that CI tests will be run when you create a PR. If you want to be sure that your code will not fail these tests, we have set up pre-commit hooks that you can install.
**If you're worried about things not being perfect with your code, we will work togethor and make it perfect. So, make your move!**
## Formating
We use [black](https://black.readthedocs.io/en/stable/) and [flake8](https://flake8.pycqa.org/en/latest/) for code formating. Please ensure that you use the same before submitting the PR.
## Testing
We adopt unit testing using [pytest](https://docs.pytest.org/en/latest/contents.html)
Please make sure that adding your new component does not decrease test coverage.
## Other tools
The use of [per-commit](https://pre-commit.com/) is recommended to ensure different requirements such as code formating, etc.
## How to start contributing to Mayavoz?
1. Checkout issues marked as `good first issue`, let us know you're interested in working on some issue by commenting under it.
2. For others, I would suggest you to explore mayavoz. One way to do is to use it to train your own model. This was you might end by finding a new unreported bug or getting an idea to improve Mayavoz.

20
LICENSE Normal file
View File

@ -0,0 +1,20 @@
MIT License
Copyright (c) 2022 Shahul Es
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

4
MANIFEST.in Normal file
View File

@ -0,0 +1,4 @@
recursive-include mayavoz *.py
recursive-include mayavoz *.yaml
global-exclude *.pyc
global-exclude __pycache__

View File

@ -2,24 +2,52 @@
<img src="https://user-images.githubusercontent.com/25312635/195514652-e4526cd1-1177-48e9-a80d-c8bfdb95d35f.png" /> <img src="https://user-images.githubusercontent.com/25312635/195514652-e4526cd1-1177-48e9-a80d-c8bfdb95d35f.png" />
</p> </p>
mayavoz is a Pytorch-based opensource toolkit for speech enhancement. It is designed to save time for audio researchers. Is provides easy to use pretrained audio enhancement models and facilitates highly customisable model training. ![GitHub Workflow Status](https://img.shields.io/github/actions/workflow/status/shahules786/mayavoz/ci.yaml?branch=main)
![GitHub](https://img.shields.io/github/license/shahules786/enhancer)
![GitHub issues](https://img.shields.io/github/issues/shahules786/enhancer?logo=GitHub)
![GitHub Repo stars](https://img.shields.io/github/stars/shahules786/enhancer?style=social)
| **[Quick Start]()** | **[Installation]()** | **[Tutorials]()** | **[Available Recipes]()** mayavoz is a Pytorch-based opensource toolkit for speech enhancement. It is designed to save time for audio practioners & researchers. It provides easy to use pretrained speech enhancement models and facilitates highly customisable model training.
| **[Quick Start](#quick-start-fire)** | **[Installation](#installation)** | **[Tutorials](https://github.com/shahules786/enhancer/tree/main/notebooks)** | **[Available Recipes](#recipes)** | **[Demo](#demo)**
## Key features :key: ## Key features :key:
* Various pretrained models nicely integrated with huggingface :hugs: that users can select and use without any hastle. * Various pretrained models nicely integrated with [huggingface hub](https://huggingface.co/docs/hub/index) :hugs: that users can select and use without any hastle.
* :package: Ability to train and validation your own custom speech enhancement models with just under 10 lines of code! * :package: Ability to train and validate your own custom speech enhancement models with just under 10 lines of code!
* :magic_wand: A command line tool that facilitates training of highly customisable speech enhacement models from the terminal itself! * :magic_wand: A command line tool that facilitates training of highly customisable speech enhacement models from the terminal itself!
* :zap: Supports multi-gpu training integrated with Pytorch Lightning. * :zap: Supports multi-gpu training integrated with [Pytorch Lightning](https://pytorchlightning.ai/).
* :shield: data augmentations integrated using [torch-augmentations](https://github.com/asteroid-team/torch-audiomentations)
## Demo
Noisy speech followed by enhanced version.
https://user-images.githubusercontent.com/25312635/203756185-737557f4-6e21-4146-aa2c-95da69d0de4c.mp4
## Quick Start :fire: ## Quick Start :fire:
``` python ``` python
from mayavoz import Mayamodel from mayavoz.models import Mayamodel
model = Mayamodel.from_pretrained("mayavoz/waveunet") model = Mayamodel.from_pretrained("shahules786/mayavoz-waveunet-valentini-28spk")
model("noisy_audio.wav") model.enhance("noisy_audio.wav")
``` ```
## Recipes
| Model | Dataset | STOI | PESQ | URL |
| :---: | :---: | :---: | :---: | :---: |
| WaveUnet | Valentini-28spk | 0.836 | 2.78 | shahules786/mayavoz-waveunet-valentini-28spk |
| Demucs | Valentini-28spk | 0.961 | 2.56 | shahules786/mayavoz-demucs-valentini-28spk |
| DCCRN | Valentini-28spk | 0.724 | 2.55 | shahules786/mayavoz-dccrn-valentini-28spk |
| Demucs | MS-SNSD-20hrs | 0.56 | 1.26 | shahules786/mayavoz-demucs-ms-snsd-20 |
Test scores are based on respective test set associated with train dataset.
**See [tutorials](/notebooks/) to train your custom model**
## Installation ## Installation
Only Python 3.8+ is officially supported (though it might work with Python 3.7) Only Python 3.8+ is officially supported (though it might work with Python 3.7)
@ -41,3 +69,10 @@ git clone url
cd mayavoz cd mayavoz
pip install -e . pip install -e .
``` ```
## Support
For commercial enquiries and scientific consulting, please [contact me](https://shahules786.github.io/).
### Acknowledgements
Sincere gratitude to [AMPLYFI](https://amplyfi.com/) for supporting this project.

View File

@ -1,13 +0,0 @@
_target_: enhancer.data.dataset.EnhancerDataset
name : vctk
root_dir : /Users/shahules/Myprojects/enhancer/datasets/vctk
duration : 1.0
sampling_rate: 16000
batch_size: 64
num_workers : 0
files:
train_clean : clean_testset_wav
test_clean : clean_testset_wav
train_noisy : noisy_testset_wav
test_noisy : noisy_testset_wav

View File

@ -1 +0,0 @@
from enhancer.data.dataset import EnhancerDataset

View File

@ -1,3 +0,0 @@
from enhancer.models.demucs import Demucs
from enhancer.models.model import Model
from enhancer.models.waveunet import WaveUnet

View File

@ -1,5 +0,0 @@
from enhancer.models.complexnn.conv import ComplexConv2d # noqa
from enhancer.models.complexnn.conv import ComplexConvTranspose2d # noqa
from enhancer.models.complexnn.rnn import ComplexLSTM # noqa
from enhancer.models.complexnn.utils import ComplexBatchNorm2D # noqa
from enhancer.models.complexnn.utils import ComplexRelu # noqa

View File

@ -1,3 +0,0 @@
from enhancer.utils.config import Files
from enhancer.utils.io import Audio
from enhancer.utils.utils import check_files

View File

@ -1,4 +1,4 @@
name: enhancer name: mayavoz
dependencies: dependencies:
- pip=21.0.1 - pip=21.0.1

View File

@ -1,39 +0,0 @@
#!/bin/bash
set -e
echo '----------------------------------------------------'
echo ' SLURM_CLUSTER_NAME = '$SLURM_CLUSTER_NAME
echo ' SLURMD_NODENAME = '$SLURMD_NODENAME
echo ' SLURM_JOBID = '$SLURM_JOBID
echo ' SLURM_JOB_USER = '$SLURM_JOB_USER
echo ' SLURM_PARTITION = '$SLURM_JOB_PARTITION
echo ' SLURM_JOB_ACCOUNT = '$SLURM_JOB_ACCOUNT
echo '----------------------------------------------------'
#TeamCity Output
cat << EOF
##teamcity[buildNumber '$SLURM_JOBID']
EOF
echo "Load HPC modules"
module load anaconda
echo "Activate Environment"
source activate enhancer
export TRANSFORMERS_OFFLINE=True
export PYTHONPATH=${PYTHONPATH}:/scratch/c.sistc3/enhancer
export HYDRA_FULL_ERROR=1
echo $PYTHONPATH
source ~/mlflow_settings.sh
echo "Making temp dir"
mkdir temp
pwd
#python transcriber/tasks/embeddings/timit.py --directory /scratch/$USER/TIMIT/data/lisa/data/timit/raw/TIMIT/TRAIN --output ./data/train
#python transcriber/tasks/embeddings/timit.py --directory /scratch/$USER/TIMIT/data/lisa/data/timit/raw/TIMIT/TEST --output ./data/test
echo "Start Training..."
python enhancer/cli/train.py

View File

@ -1 +1,2 @@
__import__("pkg_resources").declare_namespace(__name__) __import__("pkg_resources").declare_namespace(__name__)
from mayavoz.models import Mayamodel

120
mayavoz/cli/train.py Normal file
View File

@ -0,0 +1,120 @@
import os
from types import MethodType
import hydra
from hydra.utils import instantiate
from omegaconf import DictConfig, OmegaConf
from pytorch_lightning.callbacks import (
EarlyStopping,
LearningRateMonitor,
ModelCheckpoint,
)
from pytorch_lightning.loggers import MLFlowLogger
from torch.optim.lr_scheduler import ReduceLROnPlateau
# from torch_audiomentations import Compose, Shift
os.environ["HYDRA_FULL_ERROR"] = "1"
JOB_ID = os.environ.get("SLURM_JOBID", "0")
@hydra.main(config_path="train_config", config_name="config")
def train(config: DictConfig):
OmegaConf.save(config, "config.yaml")
callbacks = []
logger = MLFlowLogger(
experiment_name=config.mlflow.experiment_name,
run_name=config.mlflow.run_name,
tags={"JOB_ID": JOB_ID},
)
parameters = config.hyperparameters
# apply_augmentations = Compose(
# [
# Shift(min_shift=0.5, max_shift=1.0, shift_unit="seconds", p=0.5),
# ]
# )
dataset = instantiate(config.dataset, augmentations=None)
model = instantiate(
config.model,
dataset=dataset,
lr=parameters.get("lr"),
loss=parameters.get("loss"),
metric=parameters.get("metric"),
)
direction = model.valid_monitor
checkpoint = ModelCheckpoint(
dirpath="./model",
filename=f"model_{JOB_ID}",
monitor="valid_loss",
verbose=False,
mode=direction,
every_n_epochs=1,
)
callbacks.append(checkpoint)
callbacks.append(LearningRateMonitor(logging_interval="epoch"))
if parameters.get("Early_stop", False):
early_stopping = EarlyStopping(
monitor="val_loss",
mode=direction,
min_delta=0.0,
patience=parameters.get("EarlyStopping_patience", 10),
strict=True,
verbose=False,
)
callbacks.append(early_stopping)
def configure_optimizers(self):
optimizer = instantiate(
config.optimizer,
lr=parameters.get("lr"),
params=self.parameters(),
)
scheduler = ReduceLROnPlateau(
optimizer=optimizer,
mode=direction,
factor=parameters.get("ReduceLr_factor", 0.1),
verbose=True,
min_lr=parameters.get("min_lr", 1e-6),
patience=parameters.get("ReduceLr_patience", 3),
)
return {
"optimizer": optimizer,
"lr_scheduler": scheduler,
"monitor": f'valid_{parameters.get("ReduceLr_monitor", "loss")}',
}
model.configure_optimizers = MethodType(configure_optimizers, model)
trainer = instantiate(config.trainer, logger=logger, callbacks=callbacks)
trainer.fit(model)
trainer.test(model)
logger.experiment.log_artifact(
logger.run_id, f"{trainer.default_root_dir}/config.yaml"
)
saved_location = os.path.join(
trainer.default_root_dir, "model", f"model_{JOB_ID}.ckpt"
)
if os.path.isfile(saved_location):
logger.experiment.log_artifact(logger.run_id, saved_location)
logger.experiment.log_param(
logger.run_id,
"num_train_steps_per_epoch",
dataset.train__len__() / dataset.batch_size,
)
logger.experiment.log_param(
logger.run_id,
"num_valid_steps_per_epoch",
dataset.val__len__() / dataset.batch_size,
)
if __name__ == "__main__":
train()

View File

@ -1,10 +1,10 @@
_target_: enhancer.data.dataset.EnhancerDataset _target_: mayavoz.data.dataset.MayaDataset
name : MS-SDSD
root_dir : /Users/shahules/Myprojects/MS-SNSD root_dir : /Users/shahules/Myprojects/MS-SNSD
name : dns-2020
duration : 2.0 duration : 2.0
sampling_rate: 16000 sampling_rate: 16000
batch_size: 32 batch_size: 32
valid_size: 0.05 min_valid_minutes: 15
files: files:
train_clean : CleanSpeech_training train_clean : CleanSpeech_training
test_clean : CleanSpeech_training test_clean : CleanSpeech_training

View File

@ -1,5 +1,5 @@
_target_: enhancer.data.dataset.EnhancerDataset _target_: mayavoz.data.dataset.MayaDataset
name : vctk name : Valentini
root_dir : /scratch/c.sistc3/DS_10283_2791 root_dir : /scratch/c.sistc3/DS_10283_2791
duration : 4.5 duration : 4.5
stride : 2 stride : 2

View File

@ -1,2 +1,2 @@
experiment_name : shahules/enhancer experiment_name : shahules/mayavoz
run_name : Demucs + Vtck with stride + augmentations run_name : Demucs + Vtck with stride + augmentations

View File

@ -1,4 +1,4 @@
_target_: enhancer.models.dccrn.DCCRN _target_: mayavoz.models.dccrn.DCCRN
num_channels: 1 num_channels: 1
sampling_rate : 16000 sampling_rate : 16000
complex_lstm : True complex_lstm : True

View File

@ -1,4 +1,4 @@
_target_: enhancer.models.demucs.Demucs _target_: mayavoz.models.demucs.Demucs
num_channels: 1 num_channels: 1
resample: 4 resample: 4
sampling_rate : 16000 sampling_rate : 16000

View File

@ -1,4 +1,4 @@
_target_: enhancer.models.waveunet.WaveUnet _target_: mayavoz.models.waveunet.WaveUnet
num_channels : 1 num_channels : 1
depth : 9 depth : 9
initial_output_channels: 24 initial_output_channels: 24

1
mayavoz/data/__init__.py Normal file
View File

@ -0,0 +1 @@
from mayavoz.data.dataset import MayaDataset

View File

@ -1,6 +1,8 @@
import math import math
import multiprocessing import multiprocessing
import os import os
import sys
import warnings
from pathlib import Path from pathlib import Path
from typing import Optional from typing import Optional
@ -11,11 +13,11 @@ import torch.nn.functional as F
from torch.utils.data import DataLoader, Dataset, RandomSampler from torch.utils.data import DataLoader, Dataset, RandomSampler
from torch_audiomentations import Compose from torch_audiomentations import Compose
from enhancer.data.fileprocessor import Fileprocessor from mayavoz.data.fileprocessor import Fileprocessor
from enhancer.utils import check_files from mayavoz.utils import check_files
from enhancer.utils.config import Files from mayavoz.utils.config import Files
from enhancer.utils.io import Audio from mayavoz.utils.io import Audio
from enhancer.utils.random import create_unique_rng from mayavoz.utils.random import create_unique_rng
LARGE_NUM = 2147483647 LARGE_NUM = 2147483647
@ -80,6 +82,21 @@ class TaskDataset(pl.LightningDataModule):
self._validation = [] self._validation = []
if num_workers is None: if num_workers is None:
num_workers = multiprocessing.cpu_count() // 2 num_workers = multiprocessing.cpu_count() // 2
if num_workers is None:
num_workers = multiprocessing.cpu_count() // 2
if (
num_workers > 0
and sys.platform == "darwin"
and sys.version_info[0] >= 3
and sys.version_info[1] >= 8
):
warnings.warn(
"num_workers > 0 is not supported with macOS and Python 3.8+: "
"setting num_workers = 0."
)
num_workers = 0
self.num_workers = num_workers self.num_workers = num_workers
if min_valid_minutes > 0.0: if min_valid_minutes > 0.0:
self.min_valid_minutes = min_valid_minutes self.min_valid_minutes = min_valid_minutes
@ -248,7 +265,7 @@ class TaskDataset(pl.LightningDataModule):
) )
class EnhancerDataset(TaskDataset): class MayaDataset(TaskDataset):
""" """
Dataset object for creating clean-noisy speech enhancement datasets Dataset object for creating clean-noisy speech enhancement datasets
paramters: paramters:
@ -258,7 +275,7 @@ class EnhancerDataset(TaskDataset):
root directory of the dataset containing clean/noisy folders root directory of the dataset containing clean/noisy folders
files : Files files : Files
dataclass containing train_clean, train_noisy, test_clean, test_noisy dataclass containing train_clean, train_noisy, test_clean, test_noisy
folder names (refer enhancer.utils.Files dataclass) folder names (refer mayavoz.utils.Files dataclass)
min_valid_minutes: float min_valid_minutes: float
minimum validation split size time in minutes minimum validation split size time in minutes
algorithm randomly select n speakers (>=min_valid_minutes) from train data to form validation data. algorithm randomly select n speakers (>=min_valid_minutes) from train data to form validation data.

View File

@ -93,9 +93,9 @@ class Fileprocessor:
def from_name(cls, name: str, clean_dir, noisy_dir, matching_function=None): def from_name(cls, name: str, clean_dir, noisy_dir, matching_function=None):
if matching_function is None: if matching_function is None:
if name.lower() == "vctk": if name.lower() in ("vctk", "valentini"):
return cls(clean_dir, noisy_dir, ProcessorFunctions.one_to_one) return cls(clean_dir, noisy_dir, ProcessorFunctions.one_to_one)
elif name.lower() == "dns-2020": elif name.lower() == "ms-snsd":
return cls(clean_dir, noisy_dir, ProcessorFunctions.one_to_many) return cls(clean_dir, noisy_dir, ProcessorFunctions.one_to_many)
else: else:
raise ValueError( raise ValueError(

View File

@ -8,7 +8,7 @@ from librosa import load as load_audio
from scipy.io import wavfile from scipy.io import wavfile
from scipy.signal import get_window from scipy.signal import get_window
from enhancer.utils import Audio from mayavoz.utils import Audio
class Inference: class Inference:
@ -95,6 +95,7 @@ class Inference:
): ):
""" """
stitch batched waveform into single waveform. (Overlap-add) stitch batched waveform into single waveform. (Overlap-add)
inspired from https://github.com/asteroid-team/asteroid
arguments: arguments:
data: batched waveform data: batched waveform
window_size : window_size used to batch waveform window_size : window_size used to batch waveform

View File

@ -1,4 +1,4 @@
import logging import warnings
import numpy as np import numpy as np
import torch import torch
@ -134,7 +134,7 @@ class Pesq:
try: try:
pesq_values.append(self.pesq(pred.squeeze(), target_.squeeze())) pesq_values.append(self.pesq(pred.squeeze(), target_.squeeze()))
except Exception as e: except Exception as e:
logging.warning(f"{e} error occured while calculating PESQ") warnings.warn(f"{e} error occured while calculating PESQ")
return torch.tensor(np.mean(pesq_values)) return torch.tensor(np.mean(pesq_values))
@ -192,7 +192,7 @@ class Si_snr(nn.Module):
super().__init__() super().__init__()
self.loss_fun = ScaleInvariantSignalNoiseRatio(**kwargs) self.loss_fun = ScaleInvariantSignalNoiseRatio(**kwargs)
self.higher_better = True self.higher_better = False
self.name = "si_snr" self.name = "si_snr"
def forward(self, prediction: torch.Tensor, target: torch.Tensor): def forward(self, prediction: torch.Tensor, target: torch.Tensor):
@ -203,7 +203,7 @@ class Si_snr(nn.Module):
got {prediction.size()} and {target.size()} instead""" got {prediction.size()} and {target.size()} instead"""
) )
return self.loss_fun(prediction, target) return -1 * self.loss_fun(prediction, target)
LOSS_MAP = { LOSS_MAP = {

View File

@ -0,0 +1,3 @@
from mayavoz.models.demucs import Demucs
from mayavoz.models.model import Mayamodel
from mayavoz.models.waveunet import WaveUnet

View File

@ -0,0 +1,5 @@
from mayavoz.models.complexnn.conv import ComplexConv2d # noqa
from mayavoz.models.complexnn.conv import ComplexConvTranspose2d # noqa
from mayavoz.models.complexnn.rnn import ComplexLSTM # noqa
from mayavoz.models.complexnn.utils import ComplexBatchNorm2D # noqa
from mayavoz.models.complexnn.utils import ComplexRelu # noqa

View File

@ -129,7 +129,7 @@ class ComplexConvTranspose2d(nn.Module):
imag_real = self.real_conv(imag) imag_real = self.real_conv(imag)
real = real_real - imag_imag real = real_real - imag_imag
imag = real_imag - imag_real imag = real_imag + imag_real
out = torch.cat([real, imag], 1) out = torch.cat([real, imag], 1)

View File

@ -1,22 +1,22 @@
import logging import warnings
from typing import Any, List, Optional, Tuple, Union from typing import Any, List, Optional, Tuple, Union
import torch import torch
import torch.nn.functional as F import torch.nn.functional as F
from torch import nn from torch import nn
from enhancer.data import EnhancerDataset from mayavoz.data import MayaDataset
from enhancer.models import Model from mayavoz.models import Mayamodel
from enhancer.models.complexnn import ( from mayavoz.models.complexnn import (
ComplexBatchNorm2D, ComplexBatchNorm2D,
ComplexConv2d, ComplexConv2d,
ComplexConvTranspose2d, ComplexConvTranspose2d,
ComplexLSTM, ComplexLSTM,
ComplexRelu, ComplexRelu,
) )
from enhancer.models.complexnn.utils import complex_cat from mayavoz.models.complexnn.utils import complex_cat
from enhancer.utils.transforms import ConviSTFT, ConvSTFT from mayavoz.utils.transforms import ConviSTFT, ConvSTFT
from enhancer.utils.utils import merge_dict from mayavoz.utils.utils import merge_dict
class DCCRN_ENCODER(nn.Module): class DCCRN_ENCODER(nn.Module):
@ -98,7 +98,7 @@ class DCCRN_DECODER(nn.Module):
return self.decoder(waveform) return self.decoder(waveform)
class DCCRN(Model): class DCCRN(Mayamodel):
STFT_DEFAULTS = { STFT_DEFAULTS = {
"window_len": 400, "window_len": 400,
@ -134,17 +134,17 @@ class DCCRN(Model):
num_channels: int = 1, num_channels: int = 1,
sampling_rate=16000, sampling_rate=16000,
lr: float = 1e-3, lr: float = 1e-3,
dataset: Optional[EnhancerDataset] = None, dataset: Optional[MayaDataset] = None,
duration: Optional[float] = None, duration: Optional[float] = None,
loss: Union[str, List, Any] = "mse", loss: Union[str, List, Any] = "mse",
metric: Union[str, List] = "mse", metric: Union[str, List] = "mse",
): ):
duration = ( duration = (
dataset.duration if isinstance(dataset, EnhancerDataset) else None dataset.duration if isinstance(dataset, MayaDataset) else duration
) )
if dataset is not None: if dataset is not None:
if sampling_rate != dataset.sampling_rate: if sampling_rate != dataset.sampling_rate:
logging.warning( warnings.warn(
f"model sampling rate {sampling_rate} should match dataset sampling rate {dataset.sampling_rate}" f"model sampling rate {sampling_rate} should match dataset sampling rate {dataset.sampling_rate}"
) )
sampling_rate = dataset.sampling_rate sampling_rate = dataset.sampling_rate

View File

@ -1,14 +1,14 @@
import logging
import math import math
import warnings
from typing import List, Optional, Union from typing import List, Optional, Union
import torch.nn.functional as F import torch.nn.functional as F
from torch import nn from torch import nn
from enhancer.data.dataset import EnhancerDataset from mayavoz.data.dataset import MayaDataset
from enhancer.models.model import Model from mayavoz.models.model import Mayamodel
from enhancer.utils.io import Audio as audio from mayavoz.utils.io import Audio as audio
from enhancer.utils.utils import merge_dict from mayavoz.utils.utils import merge_dict
class DemucsLSTM(nn.Module): class DemucsLSTM(nn.Module):
@ -88,7 +88,7 @@ class DemucsDecoder(nn.Module):
return out return out
class Demucs(Model): class Demucs(Mayamodel):
""" """
Demucs model from https://arxiv.org/pdf/1911.13254.pdf Demucs model from https://arxiv.org/pdf/1911.13254.pdf
parameters: parameters:
@ -102,8 +102,8 @@ class Demucs(Model):
sampling rate of input audio sampling rate of input audio
lr : float, defaults to 1e-3 lr : float, defaults to 1e-3
learning rate used for training learning rate used for training
dataset: EnhancerDataset, optional dataset: MayaDataset, optional
EnhancerDataset object containing train/validation data for training MayaDataset object containing train/validation data for training
duration : float, optional duration : float, optional
chunk duration in seconds chunk duration in seconds
loss : string or List of strings loss : string or List of strings
@ -135,17 +135,18 @@ class Demucs(Model):
sampling_rate=16000, sampling_rate=16000,
normalize=True, normalize=True,
lr: float = 1e-3, lr: float = 1e-3,
dataset: Optional[EnhancerDataset] = None, dataset: Optional[MayaDataset] = None,
duration: Optional[float] = None,
loss: Union[str, List] = "mse", loss: Union[str, List] = "mse",
metric: Union[str, List] = "mse", metric: Union[str, List] = "mse",
floor=1e-3, floor=1e-3,
): ):
duration = ( duration = (
dataset.duration if isinstance(dataset, EnhancerDataset) else None dataset.duration if isinstance(dataset, MayaDataset) else duration
) )
if dataset is not None: if dataset is not None:
if sampling_rate != dataset.sampling_rate: if sampling_rate != dataset.sampling_rate:
logging.warning( warnings.warn(
f"model sampling rate {sampling_rate} should match dataset sampling rate {dataset.sampling_rate}" f"model sampling rate {sampling_rate} should match dataset sampling rate {dataset.sampling_rate}"
) )
sampling_rate = dataset.sampling_rate sampling_rate = dataset.sampling_rate

View File

@ -13,17 +13,21 @@ from pytorch_lightning.utilities.cloud_io import load as pl_load
from torch import nn from torch import nn
from torch.optim import Adam from torch.optim import Adam
from enhancer.data.dataset import EnhancerDataset from mayavoz.data.dataset import MayaDataset
from enhancer.inference import Inference from mayavoz.inference import Inference
from enhancer.loss import LOSS_MAP, LossWrapper from mayavoz.loss import LOSS_MAP, LossWrapper
from enhancer.version import __version__ from mayavoz.version import __version__
CACHE_DIR = "" CACHE_DIR = os.getenv(
HF_TORCH_WEIGHTS = "" "ENHANCER_CACHE",
os.path.expanduser("~/.cache/torch/mayavoz"),
)
HF_TORCH_WEIGHTS = "pytorch_model.ckpt"
DEFAULT_DEVICE = "cpu" DEFAULT_DEVICE = "cpu"
SAVE_NAME = "mayavoz"
class Model(pl.LightningModule): class Mayamodel(pl.LightningModule):
""" """
Base class for all models Base class for all models
parameters: parameters:
@ -33,8 +37,8 @@ class Model(pl.LightningModule):
audio sampling rate audio sampling rate
lr: float, optional lr: float, optional
learning rate for model training learning rate for model training
dataset: EnhancerDataset, optional dataset: MayaDataset, optional
Enhancer dataset used for training/validation mayavoz dataset used for training/validation
duration: float, optional duration: float, optional
duration used for training/inference duration used for training/inference
loss : string or List of strings or custom loss (nn.Module), default to "mse" loss : string or List of strings or custom loss (nn.Module), default to "mse"
@ -47,15 +51,13 @@ class Model(pl.LightningModule):
num_channels: int = 1, num_channels: int = 1,
sampling_rate: int = 16000, sampling_rate: int = 16000,
lr: float = 1e-3, lr: float = 1e-3,
dataset: Optional[EnhancerDataset] = None, dataset: Optional[MayaDataset] = None,
duration: Optional[float] = None, duration: Optional[float] = None,
loss: Union[str, List] = "mse", loss: Union[str, List] = "mse",
metric: Union[str, List, Any] = "mse", metric: Union[str, List, Any] = "mse",
): ):
super().__init__() super().__init__()
assert ( assert num_channels == 1, "mayavoz only support for mono channel models"
num_channels == 1
), "Enhancer only support for mono channel models"
self.dataset = dataset self.dataset = dataset
self.save_hyperparameters( self.save_hyperparameters(
"num_channels", "sampling_rate", "lr", "loss", "metric", "duration" "num_channels", "sampling_rate", "lr", "loss", "metric", "duration"
@ -232,8 +234,8 @@ class Model(pl.LightningModule):
def on_save_checkpoint(self, checkpoint): def on_save_checkpoint(self, checkpoint):
checkpoint["enhancer"] = { checkpoint[SAVE_NAME] = {
"version": {"enhancer": __version__, "pytorch": torch.__version__}, "version": {SAVE_NAME: __version__, "pytorch": torch.__version__},
"architecture": { "architecture": {
"module": self.__class__.__module__, "module": self.__class__.__module__,
"class": self.__class__.__name__, "class": self.__class__.__name__,
@ -286,8 +288,8 @@ class Model(pl.LightningModule):
Returns Returns
------- -------
model : Model model : Mayamodel
Model Mayamodel
See also See also
-------- --------
@ -316,7 +318,7 @@ class Model(pl.LightningModule):
) )
model_path_pl = cached_download( model_path_pl = cached_download(
url=url, url=url,
library_name="enhancer", library_name="mayavoz",
library_version=__version__, library_version=__version__,
cache_dir=cached_dir, cache_dir=cached_dir,
use_auth_token=use_auth_token, use_auth_token=use_auth_token,
@ -326,8 +328,8 @@ class Model(pl.LightningModule):
map_location = torch.device(DEFAULT_DEVICE) map_location = torch.device(DEFAULT_DEVICE)
loaded_checkpoint = pl_load(model_path_pl, map_location) loaded_checkpoint = pl_load(model_path_pl, map_location)
module_name = loaded_checkpoint["enhancer"]["architecture"]["module"] module_name = loaded_checkpoint[SAVE_NAME]["architecture"]["module"]
class_name = loaded_checkpoint["enhancer"]["architecture"]["class"] class_name = loaded_checkpoint[SAVE_NAME]["architecture"]["class"]
module = import_module(module_name) module = import_module(module_name)
Klass = getattr(module, class_name) Klass = getattr(module, class_name)

View File

@ -1,12 +1,12 @@
import logging import warnings
from typing import List, Optional, Union from typing import List, Optional, Union
import torch import torch
import torch.nn as nn import torch.nn as nn
import torch.nn.functional as F import torch.nn.functional as F
from enhancer.data.dataset import EnhancerDataset from mayavoz.data.dataset import MayaDataset
from enhancer.models.model import Model from mayavoz.models.model import Mayamodel
class WavenetDecoder(nn.Module): class WavenetDecoder(nn.Module):
@ -66,7 +66,7 @@ class WavenetEncoder(nn.Module):
return self.encoder(waveform) return self.encoder(waveform)
class WaveUnet(Model): class WaveUnet(Mayamodel):
""" """
Wave-U-Net model from https://arxiv.org/pdf/1811.11307.pdf Wave-U-Net model from https://arxiv.org/pdf/1811.11307.pdf
parameters: parameters:
@ -80,8 +80,8 @@ class WaveUnet(Model):
sampling rate of input audio sampling rate of input audio
lr : float, defaults to 1e-3 lr : float, defaults to 1e-3
learning rate used for training learning rate used for training
dataset: EnhancerDataset, optional dataset: MayaDataset, optional
EnhancerDataset object containing train/validation data for training MayaDataset object containing train/validation data for training
duration : float, optional duration : float, optional
chunk duration in seconds chunk duration in seconds
loss : string or List of strings loss : string or List of strings
@ -97,17 +97,17 @@ class WaveUnet(Model):
initial_output_channels: int = 24, initial_output_channels: int = 24,
sampling_rate: int = 16000, sampling_rate: int = 16000,
lr: float = 1e-3, lr: float = 1e-3,
dataset: Optional[EnhancerDataset] = None, dataset: Optional[MayaDataset] = None,
duration: Optional[float] = None, duration: Optional[float] = None,
loss: Union[str, List] = "mse", loss: Union[str, List] = "mse",
metric: Union[str, List] = "mse", metric: Union[str, List] = "mse",
): ):
duration = ( duration = (
dataset.duration if isinstance(dataset, EnhancerDataset) else None dataset.duration if isinstance(dataset, MayaDataset) else duration
) )
if dataset is not None: if dataset is not None:
if sampling_rate != dataset.sampling_rate: if sampling_rate != dataset.sampling_rate:
logging.warning( warnings.warn(
f"model sampling rate {sampling_rate} should match dataset sampling rate {dataset.sampling_rate}" f"model sampling rate {sampling_rate} should match dataset sampling rate {dataset.sampling_rate}"
) )
sampling_rate = dataset.sampling_rate sampling_rate = dataset.sampling_rate

View File

@ -0,0 +1,3 @@
from mayavoz.utils.config import Files
from mayavoz.utils.io import Audio
from mayavoz.utils.utils import check_files

View File

@ -85,7 +85,7 @@ class ConviSTFT(ConvFFT):
input = torch.cat([real, imag], 1) input = torch.cat([real, imag], 1)
out = F.conv_transpose1d(input, self.weight, stride=self.hop_size) out = F.conv_transpose1d(input, self.weight, stride=self.hop_size)
coeff = self.window.unsqueeze(1).repeat(1, 1, input.size(-1)) ** 2 coeff = self.window.unsqueeze(1).repeat(1, 1, input.size(-1)) ** 2
coeff.to(input.device) coeff = coeff.to(input.device)
coeff = F.conv_transpose1d(coeff, self.enframe, stride=self.hop_size) coeff = F.conv_transpose1d(coeff, self.enframe, stride=self.hop_size)
out = out / (coeff + 1e-8) out = out / (coeff + 1e-8)
pad = self.window_len - self.hop_size pad = self.window_len - self.hop_size

View File

@ -1,7 +1,7 @@
import os import os
from typing import Optional from typing import Optional
from enhancer.utils.config import Files from mayavoz.utils.config import Files
def check_files(root_dir: str, files: Files): def check_files(root_dir: str, files: Files):

338
notebooks/Custom_model_training.ipynb vendored Normal file
View File

@ -0,0 +1,338 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "ccd61d5c",
"metadata": {},
"source": [
"## Custom model training using mayavoz [advanced]\n",
"\n",
"In this tutorial, we will cover advanced usages and customizations for training your own speecg enhancement model. \n",
"\n",
" - [Data preparation using MayaDataset](#dataprep)\n",
" - [Model customization](#modelcustom)\n",
" - [callbacks & LR schedulers](#callbacks)\n",
" - [Model training & testing](#train)\n"
]
},
{
"cell_type": "markdown",
"id": "726c320f",
"metadata": {},
"source": [
"- **install mayavoz**"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c987c799",
"metadata": {},
"outputs": [],
"source": [
"! pip install -q mayavoz"
]
},
{
"cell_type": "markdown",
"id": "8ff9857b",
"metadata": {},
"source": [
"<div id=\"dataprep\"></div>\n",
"\n",
"### Data preparation\n",
"\n",
"`Files` is a dataclass that wraps and holds train/test paths togethor. There are usually one folder each for clean and noisy data. These paths must be relative to a `root_dir` where all these directories reside. For example\n",
"\n",
"```\n",
"- VCTK/\n",
" |__ clean_train_wav/\n",
" |__ noisy_train_wav/\n",
" |__ clean_test_wav/\n",
" |__ noisy_test_wav/\n",
" \n",
"```"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "64cbc0c8",
"metadata": {},
"outputs": [],
"source": [
"from mayavoz.utils import Files\n",
"file = Files(train_clean=\"clean_train_wav\",\n",
" train_noisy=\"noisy_train_wav\",\n",
" test_clean=\"clean_test_wav\",\n",
" test_noisy=\"noisy_test_wav\")\n",
"root_dir = \"VCTK\""
]
},
{
"cell_type": "markdown",
"id": "2d324bd1",
"metadata": {},
"source": [
"- `name`: name of the dataset. \n",
"- `duration`: control the duration of each audio instance fed into your model.\n",
"- `stride` is used if set to move the sliding window.\n",
"- `sampling_rate`: desired sampling rate for audio\n",
"- `batch_size`: model batch size\n",
"- `min_valid_minutes`: minimum validation in minutes. Validation is automatically selected from training set. (exclusive users).\n",
"- `matching_function`: there are two types of mapping functions.\n",
" - `one_to_one` : In this one clean file will only have one corresponding noisy file. For example Valentini datasets\n",
" - `one_to_many` : In this one clean file will only have one corresponding noisy file. For example MS-SNSD dataset.\n"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "6834941d",
"metadata": {},
"outputs": [],
"source": [
"name = \"vctk\"\n",
"duration : 4.5\n",
"stride : 2.0\n",
"sampling_rate : 16000\n",
"min_valid_minutes : 20.0\n",
"batch_size : 32\n",
"matching_function : \"one_to_one\"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d08c6bf8",
"metadata": {},
"outputs": [],
"source": [
"from mayavoz.dataset import MayaDataset\n",
"dataset = MayaDataset(\n",
" name=name,\n",
" root_dir=root_dir,\n",
" files=files,\n",
" duration=duration,\n",
" stride=stride,\n",
" sampling_rate=sampling_rate,\n",
" batch_size=batch_size,\n",
" min_valid_minutes=min_valid_minutes,\n",
" matching_function=matching_function\n",
" )"
]
},
{
"cell_type": "markdown",
"id": "5b315bde",
"metadata": {},
"source": [
"Now your custom dataloader is ready!"
]
},
{
"cell_type": "markdown",
"id": "01548fe5",
"metadata": {},
"source": [
"<div id=\"modelcustom\"></div>\n",
"\n",
"### Model Customization\n",
"Now, this is very easy. \n",
"\n",
"- Import the preferred model from `mayavoz.models`. Currently 3 models are implemented.\n",
" - `WaveUnet`\n",
" - `Demucs`\n",
" - `DCCRN`\n",
"- Each of model hyperparameters such as depth,kernel_size,stride etc can be controlled by you. Just check the parameters and pass it to as required.\n",
"- `sampling_rate`: sampling rate (should be equal to dataset sampling rate)\n",
"- `dataset`: mayavoz dataset object as prepared earlier.\n",
"- `loss` : model loss. Multiple loss functions are available.\n",
"\n",
" \n",
" \n",
"you can pass one (as string)/more (as list of strings) of these loss functions as per your requirements. For example, model will automatically calculate loss as average of `mae` and `mse` if you pass loss as `[\"mae\",\"mse\"]`. Available loss functions are `mse`,`mae`,`si-snr`.\n",
"\n",
"mayavoz can accept **custom loss functions**. It should be of the form.\n",
"```\n",
"class your_custom_loss(nn.Module):\n",
" def __init__(self,**kwargs):\n",
" self.higher_better = False ## loss minimization direction\n",
" self.name = \"your_loss_name\" ## loss name logging \n",
" ...\n",
" def forward(self,prediction, target):\n",
" loss = ....\n",
" return loss\n",
" \n",
"```\n",
"\n",
"- metrics : validation metrics. Available options `mae`,`mse`,`si-sdr`,`si-sdr`,`pesq`,`stoi`. One or more can be used.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b36b457c",
"metadata": {},
"outputs": [],
"source": [
"from mayavoz.models import Demucs\n",
"model = Demucs(\n",
" sampling_rate=16000,\n",
" dataset=dataset,\n",
" loss=[\"mae\"],\n",
" metrics=[\"stoi\",\"pesq\"])\n"
]
},
{
"cell_type": "markdown",
"id": "1523d638",
"metadata": {},
"source": [
"<div id=\"callbacks\"></div>\n",
"\n",
"### learning rate schedulers and callbacks\n",
"Here I am using `ReduceLROnPlateau`"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "8de6931c",
"metadata": {},
"outputs": [],
"source": [
"from torch.optim.lr_scheduler import ReduceLROnPlateau\n",
"\n",
"def configure_optimizers(self):\n",
" optimizer = instantiate(\n",
" config.optimizer,\n",
" lr=parameters.get(\"lr\"),\n",
" params=self.parameters(),\n",
" )\n",
" scheduler = ReduceLROnPlateau(\n",
" optimizer=optimizer,\n",
" mode=direction,\n",
" factor=parameters.get(\"ReduceLr_factor\", 0.1),\n",
" verbose=True,\n",
" min_lr=parameters.get(\"min_lr\", 1e-6),\n",
" patience=parameters.get(\"ReduceLr_patience\", 3),\n",
" )\n",
" return {\n",
" \"optimizer\": optimizer,\n",
" \"lr_scheduler\": scheduler,\n",
" \"monitor\": f'valid_{parameters.get(\"ReduceLr_monitor\", \"loss\")}',\n",
" }\n",
"\n",
"\n",
"model.configure_optimizers = MethodType(configure_optimizers, model)"
]
},
{
"cell_type": "markdown",
"id": "2f7b5af5",
"metadata": {},
"source": [
"you can use any number of callbacks and pass it directly to pytorch lightning trainer. Here I am using only `ModelCheckpoint`"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "6f6b62a1",
"metadata": {},
"outputs": [],
"source": [
"callbacks = []\n",
"direction = model.valid_monitor ## min or max \n",
"checkpoint = ModelCheckpoint(\n",
" dirpath=\"./model\",\n",
" filename=f\"model_filename\",\n",
" monitor=\"valid_loss\",\n",
" verbose=False,\n",
" mode=direction,\n",
" every_n_epochs=1,\n",
" )\n",
"callbacks.append(checkpoint)"
]
},
{
"cell_type": "markdown",
"id": "f3534445",
"metadata": {},
"source": [
"<div id=\"train\"></div>\n",
"\n",
"\n",
"### Train"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "3dc0348b",
"metadata": {},
"outputs": [],
"source": [
"import pytorch_lightning as pl\n",
"trainer = plt.Trainer(max_epochs=1,callbacks=callbacks,accelerator=\"gpu\")\n",
"trainer.fit(model)\n"
]
},
{
"cell_type": "markdown",
"id": "56dcfec1",
"metadata": {},
"source": [
"- Test your model agaist test dataset"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "63851feb",
"metadata": {},
"outputs": [],
"source": [
"trainer.test(model)"
]
},
{
"cell_type": "markdown",
"id": "4d3f5350",
"metadata": {},
"source": [
"**Hurray! you have your speech enhancement model trained and tested.**\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "10d630e8",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "enhancer",
"language": "python",
"name": "enhancer"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.13"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

597
notebooks/Getting_started.ipynb vendored Normal file

File diff suppressed because one or more lines are too long

View File

@ -0,0 +1,120 @@
import os
from types import MethodType
import hydra
from hydra.utils import instantiate
from omegaconf import DictConfig, OmegaConf
from pytorch_lightning.callbacks import (
EarlyStopping,
LearningRateMonitor,
ModelCheckpoint,
)
from pytorch_lightning.loggers import MLFlowLogger
from torch.optim.lr_scheduler import ReduceLROnPlateau
# from torch_audiomentations import Compose, Shift
os.environ["HYDRA_FULL_ERROR"] = "1"
JOB_ID = os.environ.get("SLURM_JOBID", "0")
@hydra.main(config_path="train_config", config_name="config")
def train(config: DictConfig):
OmegaConf.save(config, "config.yaml")
callbacks = []
logger = MLFlowLogger(
experiment_name=config.mlflow.experiment_name,
run_name=config.mlflow.run_name,
tags={"JOB_ID": JOB_ID},
)
parameters = config.hyperparameters
# apply_augmentations = Compose(
# [
# Shift(min_shift=0.5, max_shift=1.0, shift_unit="seconds", p=0.5),
# ]
# )
dataset = instantiate(config.dataset, augmentations=None)
model = instantiate(
config.model,
dataset=dataset,
lr=parameters.get("lr"),
loss=parameters.get("loss"),
metric=parameters.get("metric"),
)
direction = model.valid_monitor
checkpoint = ModelCheckpoint(
dirpath="./model",
filename=f"model_{JOB_ID}",
monitor="valid_loss",
verbose=False,
mode=direction,
every_n_epochs=1,
)
callbacks.append(checkpoint)
callbacks.append(LearningRateMonitor(logging_interval="epoch"))
if parameters.get("Early_stop", False):
early_stopping = EarlyStopping(
monitor="val_loss",
mode=direction,
min_delta=0.0,
patience=parameters.get("EarlyStopping_patience", 10),
strict=True,
verbose=False,
)
callbacks.append(early_stopping)
def configure_optimizers(self):
optimizer = instantiate(
config.optimizer,
lr=parameters.get("lr"),
params=self.parameters(),
)
scheduler = ReduceLROnPlateau(
optimizer=optimizer,
mode=direction,
factor=parameters.get("ReduceLr_factor", 0.1),
verbose=True,
min_lr=parameters.get("min_lr", 1e-6),
patience=parameters.get("ReduceLr_patience", 3),
)
return {
"optimizer": optimizer,
"lr_scheduler": scheduler,
"monitor": f'valid_{parameters.get("ReduceLr_monitor", "loss")}',
}
model.configure_optimizers = MethodType(configure_optimizers, model)
trainer = instantiate(config.trainer, logger=logger, callbacks=callbacks)
trainer.fit(model)
trainer.test(model)
logger.experiment.log_artifact(
logger.run_id, f"{trainer.default_root_dir}/config.yaml"
)
saved_location = os.path.join(
trainer.default_root_dir, "model", f"model_{JOB_ID}.ckpt"
)
if os.path.isfile(saved_location):
logger.experiment.log_artifact(logger.run_id, saved_location)
logger.experiment.log_param(
logger.run_id,
"num_train_steps_per_epoch",
dataset.train__len__() / dataset.batch_size,
)
logger.experiment.log_param(
logger.run_id,
"num_valid_steps_per_epoch",
dataset.val__len__() / dataset.batch_size,
)
if __name__ == "__main__":
train()

View File

@ -0,0 +1,7 @@
defaults:
- model : Demucs
- dataset : MS-SNSD
- optimizer : Adam
- hyperparameters : default
- trainer : default
- mlflow : experiment

View File

@ -0,0 +1,13 @@
_target_: mayavoz.data.dataset.MayaDataset
name : MS-SDSD
root_dir : /Users/shahules/Myprojects/MS-SNSD
duration : 1.5
stride : 1
sampling_rate: 16000
batch_size: 32
min_valid_minutes: 25
files:
train_clean : CleanSpeech_training
test_clean : CleanSpeech_training
train_noisy : NoisySpeech_training
test_noisy : NoisySpeech_training

View File

@ -0,0 +1,7 @@
loss : si-snr
metric : [stoi,pesq]
lr : 0.001
ReduceLr_patience : 10
ReduceLr_factor : 0.5
min_lr : 0.000001
EarlyStopping_factor : 10

View File

@ -0,0 +1,2 @@
experiment_name : shahules/mayavoz
run_name : Demucs + Vtck with stride + augmentations

View File

@ -0,0 +1,25 @@
_target_: mayavoz.models.dccrn.DCCRN
num_channels: 1
sampling_rate : 16000
complex_lstm : True
complex_norm : True
complex_relu : True
masking_mode : True
encoder_decoder:
initial_output_channels : 32
depth : 6
kernel_size : 5
growth_factor : 2
stride : 2
padding : 2
output_padding : 1
lstm:
num_layers : 2
hidden_size : 256
stft:
window_len : 400
hop_size : 100
nfft : 512

View File

@ -0,0 +1,6 @@
_target_: torch.optim.Adam
lr: 1e-3
betas: [0.9, 0.999]
eps: 1e-08
weight_decay: 0
amsgrad: False

View File

@ -0,0 +1,46 @@
_target_: pytorch_lightning.Trainer
accelerator: gpu
accumulate_grad_batches: 1
amp_backend: native
auto_lr_find: True
auto_scale_batch_size: False
auto_select_gpus: True
benchmark: False
check_val_every_n_epoch: 1
detect_anomaly: False
deterministic: False
devices: 2
enable_checkpointing: True
enable_model_summary: True
enable_progress_bar: True
fast_dev_run: False
gpus: null
gradient_clip_val: 0
gradient_clip_algorithm: norm
ipus: null
limit_predict_batches: 1.0
limit_test_batches: 1.0
limit_train_batches: 1.0
limit_val_batches: 1.0
log_every_n_steps: 50
max_epochs: 200
max_steps: -1
max_time: null
min_epochs: 1
min_steps: null
move_metrics_to_cpu: False
multiple_trainloader_mode: max_size_cycle
num_nodes: 1
num_processes: 1
num_sanity_val_steps: 2
overfit_batches: 0.0
precision: 32
profiler: null
reload_dataloaders_every_n_epochs: 0
replace_sampler_ddp: True
strategy: ddp
sync_batchnorm: False
tpu_cores: null
track_grad_norm: -1
val_check_interval: 1.0
weights_save_path: null

View File

@ -0,0 +1,2 @@
_target_: pytorch_lightning.Trainer
fast_dev_run: True

View File

@ -0,0 +1,120 @@
import os
from types import MethodType
import hydra
from hydra.utils import instantiate
from omegaconf import DictConfig, OmegaConf
from pytorch_lightning.callbacks import (
EarlyStopping,
LearningRateMonitor,
ModelCheckpoint,
)
from pytorch_lightning.loggers import MLFlowLogger
from torch.optim.lr_scheduler import ReduceLROnPlateau
# from torch_audiomentations import Compose, Shift
os.environ["HYDRA_FULL_ERROR"] = "1"
JOB_ID = os.environ.get("SLURM_JOBID", "0")
@hydra.main(config_path="train_config", config_name="config")
def train(config: DictConfig):
OmegaConf.save(config, "config.yaml")
callbacks = []
logger = MLFlowLogger(
experiment_name=config.mlflow.experiment_name,
run_name=config.mlflow.run_name,
tags={"JOB_ID": JOB_ID},
)
parameters = config.hyperparameters
# apply_augmentations = Compose(
# [
# Shift(min_shift=0.5, max_shift=1.0, shift_unit="seconds", p=0.5),
# ]
# )
dataset = instantiate(config.dataset, augmentations=None)
model = instantiate(
config.model,
dataset=dataset,
lr=parameters.get("lr"),
loss=parameters.get("loss"),
metric=parameters.get("metric"),
)
direction = model.valid_monitor
checkpoint = ModelCheckpoint(
dirpath="./model",
filename=f"model_{JOB_ID}",
monitor="valid_loss",
verbose=False,
mode=direction,
every_n_epochs=1,
)
callbacks.append(checkpoint)
callbacks.append(LearningRateMonitor(logging_interval="epoch"))
if parameters.get("Early_stop", False):
early_stopping = EarlyStopping(
monitor="val_loss",
mode=direction,
min_delta=0.0,
patience=parameters.get("EarlyStopping_patience", 10),
strict=True,
verbose=False,
)
callbacks.append(early_stopping)
def configure_optimizers(self):
optimizer = instantiate(
config.optimizer,
lr=parameters.get("lr"),
params=self.parameters(),
)
scheduler = ReduceLROnPlateau(
optimizer=optimizer,
mode=direction,
factor=parameters.get("ReduceLr_factor", 0.1),
verbose=True,
min_lr=parameters.get("min_lr", 1e-6),
patience=parameters.get("ReduceLr_patience", 3),
)
return {
"optimizer": optimizer,
"lr_scheduler": scheduler,
"monitor": f'valid_{parameters.get("ReduceLr_monitor", "loss")}',
}
model.configure_optimizers = MethodType(configure_optimizers, model)
trainer = instantiate(config.trainer, logger=logger, callbacks=callbacks)
trainer.fit(model)
trainer.test(model)
logger.experiment.log_artifact(
logger.run_id, f"{trainer.default_root_dir}/config.yaml"
)
saved_location = os.path.join(
trainer.default_root_dir, "model", f"model_{JOB_ID}.ckpt"
)
if os.path.isfile(saved_location):
logger.experiment.log_artifact(logger.run_id, saved_location)
logger.experiment.log_param(
logger.run_id,
"num_train_steps_per_epoch",
dataset.train__len__() / dataset.batch_size,
)
logger.experiment.log_param(
logger.run_id,
"num_valid_steps_per_epoch",
dataset.val__len__() / dataset.batch_size,
)
if __name__ == "__main__":
train()

View File

@ -0,0 +1,7 @@
defaults:
- model : Demucs
- dataset : MS-SNSD
- optimizer : Adam
- hyperparameters : default
- trainer : default
- mlflow : experiment

View File

@ -0,0 +1,13 @@
_target_: mayavoz.data.dataset.MayaDataset
name : MS-SDSD
root_dir : /Users/shahules/Myprojects/MS-SNSD
duration : 5
stride : 1
sampling_rate: 16000
batch_size: 32
min_valid_minutes: 25
files:
train_clean : CleanSpeech_training
test_clean : CleanSpeech_training
train_noisy : NoisySpeech_training
test_noisy : NoisySpeech_training

View File

@ -0,0 +1,7 @@
loss : mae
metric : [stoi,pesq]
lr : 0.0003
ReduceLr_patience : 10
ReduceLr_factor : 0.5
min_lr : 0.000001
EarlyStopping_factor : 10

View File

@ -0,0 +1,2 @@
experiment_name : shahules/mayavoz
run_name : demucs-ms-snsd

View File

@ -0,0 +1,16 @@
_target_: mayavoz.models.demucs.Demucs
num_channels: 1
resample: 4
sampling_rate : 16000
encoder_decoder:
depth: 4
initial_output_channels: 64
kernel_size: 8
stride: 4
growth_factor: 2
glu: True
lstm:
bidirectional: False
num_layers: 2

View File

@ -0,0 +1,6 @@
_target_: torch.optim.Adam
lr: 1e-3
betas: [0.9, 0.999]
eps: 1e-08
weight_decay: 0
amsgrad: False

View File

@ -0,0 +1,46 @@
_target_: pytorch_lightning.Trainer
accelerator: gpu
accumulate_grad_batches: 1
amp_backend: native
auto_lr_find: True
auto_scale_batch_size: False
auto_select_gpus: True
benchmark: False
check_val_every_n_epoch: 1
detect_anomaly: False
deterministic: False
devices: 2
enable_checkpointing: True
enable_model_summary: True
enable_progress_bar: True
fast_dev_run: False
gpus: null
gradient_clip_val: 0
gradient_clip_algorithm: norm
ipus: null
limit_predict_batches: 1.0
limit_test_batches: 1.0
limit_train_batches: 1.0
limit_val_batches: 1.0
log_every_n_steps: 50
max_epochs: 200
max_steps: -1
max_time: null
min_epochs: 1
min_steps: null
move_metrics_to_cpu: False
multiple_trainloader_mode: max_size_cycle
num_nodes: 1
num_processes: 1
num_sanity_val_steps: 2
overfit_batches: 0.0
precision: 32
profiler: null
reload_dataloaders_every_n_epochs: 0
replace_sampler_ddp: True
strategy: ddp
sync_batchnorm: False
tpu_cores: null
track_grad_norm: -1
val_check_interval: 1.0
weights_save_path: null

View File

@ -0,0 +1,2 @@
_target_: pytorch_lightning.Trainer
fast_dev_run: True

View File

@ -0,0 +1,17 @@
### Microsoft Scalable Noisy Speech Dataset (MS-SNSD)
MS-SNSD is a speech datasetthat can scale to arbitrary sizes depending on the number of speakers, noise types, and Speech to Noise Ratio (SNR) levels desired.
### Dataset download & setup
- Follow steps in the official repo [here](https://github.com/microsoft/MS-SNSD) to download and setup the dataset.
**References**
```BibTex
@article{reddy2019scalable,
title={A Scalable Noisy Speech Dataset and Online Subjective Test Framework},
author={Reddy, Chandan KA and Beyrami, Ebrahim and Pool, Jamie and Cutler, Ross and Srinivasan, Sriram and Gehrke, Johannes},
journal={Proc. Interspeech 2019},
pages={1816--1820},
year={2019}
}
```

View File

@ -0,0 +1,7 @@
defaults:
- model : Demucs
- dataset : Vctk
- optimizer : Adam
- hyperparameters : default
- trainer : default
- mlflow : experiment

View File

@ -0,0 +1,13 @@
_target_: mayavoz.data.dataset.MayaDataset
name : vctk
root_dir : /scratch/c.sistc3/DS_10283_2791
duration : 4.5
stride : 0.5
sampling_rate: 16000
batch_size: 32
min_valid_minutes : 25
files:
train_clean : clean_trainset_28spk_wav
test_clean : clean_testset_wav
train_noisy : noisy_trainset_28spk_wav
test_noisy : noisy_testset_wav

View File

@ -0,0 +1,8 @@
loss : mae
metric : [stoi,pesq,si-sdr]
lr : 0.0003
Early_stop : False
ReduceLr_patience : 10
ReduceLr_factor : 0.1
min_lr : 0.000001
EarlyStopping_factor : 10

View File

@ -0,0 +1,2 @@
experiment_name : shahules/mayavoz
run_name : baseline

View File

@ -0,0 +1,16 @@
_target_: mayavoz.models.demucs.Demucs
num_channels: 1
resample: 4
sampling_rate : 16000
encoder_decoder:
depth: 4
initial_output_channels: 64
kernel_size: 8
stride: 4
growth_factor: 2
glu: True
lstm:
bidirectional: True
num_layers: 2

View File

@ -0,0 +1,6 @@
_target_: torch.optim.Adam
lr: 1e-3
betas: [0.9, 0.999]
eps: 1e-08
weight_decay: 0
amsgrad: False

View File

@ -0,0 +1,46 @@
_target_: pytorch_lightning.Trainer
accelerator: gpu
accumulate_grad_batches: 1
amp_backend: native
auto_lr_find: True
auto_scale_batch_size: False
auto_select_gpus: True
benchmark: False
check_val_every_n_epoch: 1
detect_anomaly: False
deterministic: False
devices: 1
enable_checkpointing: True
enable_model_summary: True
enable_progress_bar: True
fast_dev_run: False
gpus: null
gradient_clip_val: 0
gradient_clip_algorithm: norm
ipus: null
limit_predict_batches: 1.0
limit_test_batches: 1.0
limit_train_batches: 1.0
limit_val_batches: 1.0
log_every_n_steps: 50
max_epochs: 200
max_steps: -1
max_time: null
min_epochs: 1
min_steps: null
move_metrics_to_cpu: False
multiple_trainloader_mode: max_size_cycle
num_nodes: 1
num_processes: 1
num_sanity_val_steps: 2
overfit_batches: 0.0
precision: 32
profiler: null
reload_dataloaders_every_n_epochs: 0
replace_sampler_ddp: True
strategy: null
sync_batchnorm: False
tpu_cores: null
track_grad_norm: -1
val_check_interval: 1.0
weights_save_path: null

View File

@ -0,0 +1,120 @@
import os
from types import MethodType
import hydra
from hydra.utils import instantiate
from omegaconf import DictConfig, OmegaConf
from pytorch_lightning.callbacks import (
EarlyStopping,
LearningRateMonitor,
ModelCheckpoint,
)
from pytorch_lightning.loggers import MLFlowLogger
from torch.optim.lr_scheduler import ReduceLROnPlateau
# from torch_audiomentations import Compose, Shift
os.environ["HYDRA_FULL_ERROR"] = "1"
JOB_ID = os.environ.get("SLURM_JOBID", "0")
@hydra.main(config_path="train_config", config_name="config")
def main(config: DictConfig):
OmegaConf.save(config, "config_log.yaml")
callbacks = []
logger = MLFlowLogger(
experiment_name=config.mlflow.experiment_name,
run_name=config.mlflow.run_name,
tags={"JOB_ID": JOB_ID},
)
parameters = config.hyperparameters
# apply_augmentations = Compose(
# [
# Shift(min_shift=0.5, max_shift=1.0, shift_unit="seconds", p=0.5),
# ]
# )
dataset = instantiate(config.dataset, augmentations=None)
model = instantiate(
config.model,
dataset=dataset,
lr=parameters.get("lr"),
loss=parameters.get("loss"),
metric=parameters.get("metric"),
)
direction = model.valid_monitor
checkpoint = ModelCheckpoint(
dirpath="./model",
filename=f"model_{JOB_ID}",
monitor="valid_loss",
verbose=False,
mode=direction,
every_n_epochs=1,
)
callbacks.append(checkpoint)
callbacks.append(LearningRateMonitor(logging_interval="epoch"))
if parameters.get("Early_stop", False):
early_stopping = EarlyStopping(
monitor="val_loss",
mode=direction,
min_delta=0.0,
patience=parameters.get("EarlyStopping_patience", 10),
strict=True,
verbose=False,
)
callbacks.append(early_stopping)
def configure_optimizers(self):
optimizer = instantiate(
config.optimizer,
lr=parameters.get("lr"),
params=self.parameters(),
)
scheduler = ReduceLROnPlateau(
optimizer=optimizer,
mode=direction,
factor=parameters.get("ReduceLr_factor", 0.1),
verbose=True,
min_lr=parameters.get("min_lr", 1e-6),
patience=parameters.get("ReduceLr_patience", 3),
)
return {
"optimizer": optimizer,
"lr_scheduler": scheduler,
"monitor": f'valid_{parameters.get("ReduceLr_monitor", "loss")}',
}
model.configure_optimizers = MethodType(configure_optimizers, model)
trainer = instantiate(config.trainer, logger=logger, callbacks=callbacks)
trainer.fit(model)
trainer.test(model)
logger.experiment.log_artifact(
logger.run_id, f"{trainer.default_root_dir}/config_log.yaml"
)
saved_location = os.path.join(
trainer.default_root_dir, "model", f"model_{JOB_ID}.ckpt"
)
if os.path.isfile(saved_location):
logger.experiment.log_artifact(logger.run_id, saved_location)
logger.experiment.log_param(
logger.run_id,
"num_train_steps_per_epoch",
dataset.train__len__() / dataset.batch_size,
)
logger.experiment.log_param(
logger.run_id,
"num_valid_steps_per_epoch",
dataset.val__len__() / dataset.batch_size,
)
if __name__ == "__main__":
main()

View File

@ -0,0 +1,7 @@
defaults:
- model : WaveUnet
- dataset : Vctk
- optimizer : Adam
- hyperparameters : default
- trainer : default
- mlflow : experiment

View File

@ -0,0 +1,13 @@
_target_: mayavoz.data.dataset.MayaDataset
name : vctk
root_dir : /scratch/c.sistc3/DS_10283_2791
duration : 2
stride : 1
sampling_rate: 16000
batch_size: 128
valid_minutes : 25
files:
train_clean : clean_trainset_28spk_wav
test_clean : clean_testset_wav
train_noisy : noisy_trainset_28spk_wav
test_noisy : noisy_testset_wav

View File

@ -0,0 +1,8 @@
loss : mae
metric : [stoi,pesq,si-sdr]
lr : 0.003
ReduceLr_patience : 10
ReduceLr_factor : 0.1
min_lr : 0.000001
EarlyStopping_factor : 10
Early_stop : False

View File

@ -0,0 +1,2 @@
experiment_name : shahules/mayavoz
run_name : baseline

View File

@ -0,0 +1,5 @@
_target_: mayavoz.models.waveunet.WaveUnet
num_channels : 1
depth : 9
initial_output_channels: 24
sampling_rate : 16000

View File

@ -0,0 +1,6 @@
_target_: torch.optim.Adam
lr: 1e-3
betas: [0.9, 0.999]
eps: 1e-08
weight_decay: 0
amsgrad: False

View File

@ -0,0 +1,46 @@
_target_: pytorch_lightning.Trainer
accelerator: gpu
accumulate_grad_batches: 1
amp_backend: native
auto_lr_find: True
auto_scale_batch_size: False
auto_select_gpus: True
benchmark: False
check_val_every_n_epoch: 1
detect_anomaly: False
deterministic: False
devices: 2
enable_checkpointing: True
enable_model_summary: True
enable_progress_bar: True
fast_dev_run: False
gpus: null
gradient_clip_val: 0
gradient_clip_algorithm: norm
ipus: null
limit_predict_batches: 1.0
limit_test_batches: 1.0
limit_train_batches: 1.0
limit_val_batches: 1.0
log_every_n_steps: 50
max_epochs: 200
max_steps: -1
max_time: null
min_epochs: 1
min_steps: null
move_metrics_to_cpu: False
multiple_trainloader_mode: max_size_cycle
num_nodes: 1
num_processes: 1
num_sanity_val_steps: 2
overfit_batches: 0.0
precision: 32
profiler: null
reload_dataloaders_every_n_epochs: 0
replace_sampler_ddp: True
strategy: ddp
sync_batchnorm: False
tpu_cores: null
track_grad_norm: -1
val_check_interval: 1.0
weights_save_path: null

View File

@ -0,0 +1,2 @@
_target_: pytorch_lightning.Trainer
fast_dev_run: True

View File

@ -0,0 +1,12 @@
## Valentini dataset
Clean and noisy parallel speech database. The database was designed to train and test speech enhancement methods that operate at 48kHz. A more detailed description can be found in the papers associated with the database.[official page](https://datashare.ed.ac.uk/handle/10283/2791)
**References**
```BibTex
@misc{
title={Noisy speech database for training speech enhancement algorithms and TTS models},
author={Valentini-Botinhao, Cassia}, year={2017},
doi=https://doi.org/10.7488/ds/2117,
}
```

View File

@ -3,7 +3,7 @@ huggingface-hub>=0.10.0
hydra-core>=1.2.0 hydra-core>=1.2.0
joblib>=1.2.0 joblib>=1.2.0
librosa>=0.9.2 librosa>=0.9.2
mlflow>=1.29.0 mlflow>=1.28.0
numpy>=1.23.3 numpy>=1.23.3
pesq==0.0.4 pesq==0.0.4
protobuf>=3.19.6 protobuf>=3.19.6

View File

@ -3,7 +3,7 @@
# http://setuptools.readthedocs.io/en/latest/setuptools.html#configuring-setup-using-setup-cfg-files # http://setuptools.readthedocs.io/en/latest/setuptools.html#configuring-setup-using-setup-cfg-files
[metadata] [metadata]
name = enhancer name = mayavoz
description = Deep learning for speech enhacement description = Deep learning for speech enhacement
author = Shahul Ess author = Shahul Ess
author-email = shahules786@gmail.com author-email = shahules786@gmail.com
@ -53,7 +53,7 @@ cli =
[options.entry_points] [options.entry_points]
console_scripts = console_scripts =
enhancer-train=enhancer.cli.train:train mayavoz-train=mayavoz.cli.train:train
[test] [test]
# py.test options when running `python setup.py test` # py.test options when running `python setup.py test`
@ -66,7 +66,7 @@ extras = True
# e.g. --cov-report html (or xml) for html/xml output or --junitxml junit.xml # e.g. --cov-report html (or xml) for html/xml output or --junitxml junit.xml
# in order to write a coverage file that can be read by Jenkins. # in order to write a coverage file that can be read by Jenkins.
addopts = addopts =
--cov enhancer --cov-report term-missing --cov mayavoz --cov-report term-missing
--verbose --verbose
norecursedirs = norecursedirs =
dist dist
@ -98,3 +98,7 @@ exclude =
build build
dist dist
.eggs .eggs
[options.data_files]
. = requirements.txt
_ = version.txt

View File

@ -33,15 +33,15 @@ elif sha != "Unknown":
version += "+" + sha[:7] version += "+" + sha[:7]
print("-- Building version " + version) print("-- Building version " + version)
version_path = ROOT_DIR / "enhancer" / "version.py" version_path = ROOT_DIR / "mayavoz" / "version.py"
with open(version_path, "w") as f: with open(version_path, "w") as f:
f.write("__version__ = '{}'\n".format(version)) f.write("__version__ = '{}'\n".format(version))
if __name__ == "__main__": if __name__ == "__main__":
setup( setup(
name="enhancer", name="mayavoz",
namespace_packages=["enhancer"], namespace_packages=["mayavoz"],
version=version, version=version,
packages=find_packages(), packages=find_packages(),
install_requires=requirements, install_requires=requirements,

View File

@ -1,13 +0,0 @@
#!/bin/bash
set -e
echo "Loading Anaconda Module"
module load anaconda
echo "Creating Virtual Environment"
conda env create -f environment.yml || conda env update -f environment.yml
source activate enhancer
echo "copying files"
# cp /scratch/$USER/TIMIT/.* /deep-transcriber

View File

@ -1,7 +1,7 @@
import pytest import pytest
import torch import torch
from enhancer.loss import mean_absolute_error, mean_squared_error from mayavoz.loss import mean_absolute_error, mean_squared_error
loss_functions = [mean_absolute_error(), mean_squared_error()] loss_functions = [mean_absolute_error(), mean_squared_error()]

View File

@ -1,8 +1,8 @@
import torch import torch
from enhancer.models.complexnn.conv import ComplexConv2d, ComplexConvTranspose2d from mayavoz.models.complexnn.conv import ComplexConv2d, ComplexConvTranspose2d
from enhancer.models.complexnn.rnn import ComplexLSTM from mayavoz.models.complexnn.rnn import ComplexLSTM
from enhancer.models.complexnn.utils import ComplexBatchNorm2D from mayavoz.models.complexnn.utils import ComplexBatchNorm2D
def test_complexconv2d(): def test_complexconv2d():

View File

@ -1,9 +1,9 @@
import pytest import pytest
import torch import torch
from enhancer.data.dataset import EnhancerDataset from mayavoz.data.dataset import MayaDataset
from enhancer.models import Demucs from mayavoz.models import Demucs
from enhancer.utils.config import Files from mayavoz.utils.config import Files
@pytest.fixture @pytest.fixture
@ -15,7 +15,9 @@ def vctk_dataset():
test_clean="clean_testset_wav", test_clean="clean_testset_wav",
test_noisy="noisy_testset_wav", test_noisy="noisy_testset_wav",
) )
dataset = EnhancerDataset(name="vctk", root_dir=root_dir, files=files) dataset = MayaDataset(
name="vctk", root_dir=root_dir, files=files, sampling_rate=16000
)
return dataset return dataset

View File

@ -1,9 +1,9 @@
import pytest import pytest
import torch import torch
from enhancer.data.dataset import EnhancerDataset from mayavoz.data.dataset import MayaDataset
from enhancer.models.dccrn import DCCRN from mayavoz.models.dccrn import DCCRN
from enhancer.utils.config import Files from mayavoz.utils.config import Files
@pytest.fixture @pytest.fixture
@ -15,7 +15,9 @@ def vctk_dataset():
test_clean="clean_testset_wav", test_clean="clean_testset_wav",
test_noisy="noisy_testset_wav", test_noisy="noisy_testset_wav",
) )
dataset = EnhancerDataset(name="vctk", root_dir=root_dir, files=files) dataset = MayaDataset(
name="vctk", root_dir=root_dir, files=files, sampling_rate=16000
)
return dataset return dataset

View File

@ -1,9 +1,9 @@
import pytest import pytest
import torch import torch
from enhancer.data.dataset import EnhancerDataset from mayavoz.data.dataset import MayaDataset
from enhancer.models import WaveUnet from mayavoz.models import WaveUnet
from enhancer.utils.config import Files from mayavoz.utils.config import Files
@pytest.fixture @pytest.fixture
@ -15,7 +15,9 @@ def vctk_dataset():
test_clean="clean_testset_wav", test_clean="clean_testset_wav",
test_noisy="noisy_testset_wav", test_noisy="noisy_testset_wav",
) )
dataset = EnhancerDataset(name="vctk", root_dir=root_dir, files=files) dataset = MayaDataset(
name="vctk", root_dir=root_dir, files=files, sampling_rate=16000
)
return dataset return dataset

View File

@ -1,7 +1,7 @@
import pytest import pytest
import torch import torch
from enhancer.inference import Inference from mayavoz.inference import Inference
@pytest.mark.parametrize( @pytest.mark.parametrize(
@ -27,3 +27,12 @@ def test_aggregate():
data=rand, window_size=100, total_frames=1000, step_size=100 data=rand, window_size=100, total_frames=1000, step_size=100
) )
assert agg_rand.shape[-1] == 1000 assert agg_rand.shape[-1] == 1000
def test_pretrained():
from mayavoz.models import Mayamodel
model = Mayamodel.from_pretrained(
"shahules786/mayavoz-waveunet-valentini-28spk"
)
_ = model.enhance("tests/data/vctk/clean_testset_wav/p257_166.wav")

View File

@ -1,6 +1,6 @@
import torch import torch
from enhancer.utils.transforms import ConviSTFT, ConvSTFT from mayavoz.utils.transforms import ConviSTFT, ConvSTFT
def test_stft_istft(): def test_stft_istft():

Some files were not shown because too many files have changed in this diff Show More