rmv loss
This commit is contained in:
		
							parent
							
								
									18721e203b
								
							
						
					
					
						commit
						cfff2bed11
					
				|  | @ -1,65 +0,0 @@ | |||
| from turtle import forward | ||||
| import torch | ||||
| import torch.nn as nn | ||||
| 
 | ||||
| 
 | ||||
| class mean_squared_error(nn.Module): | ||||
| 
 | ||||
|     def __init__(self,reduction="mean"): | ||||
|         super().__init__() | ||||
| 
 | ||||
|         self.loss_fun = nn.MSELoss(reduction=reduction) | ||||
| 
 | ||||
|     def forward(self,prediction:torch.Tensor, target: torch.Tensor): | ||||
| 
 | ||||
|         if prediction.size() != target.size() or target.ndim < 3: | ||||
|             raise TypeError(f"""Inputs must be of the same shape (batch_size,channels,samples)  | ||||
|                             got {prediction.size()} and {target.size()} instead""") | ||||
| 
 | ||||
|         return self.loss_fun(prediction, target) | ||||
| 
 | ||||
| class mean_absolute_error(nn.Module): | ||||
| 
 | ||||
|     def __init__(self,reduction="mean"): | ||||
|         super().__init__() | ||||
| 
 | ||||
|         self.loss_fun = nn.L1Loss(reduction=reduction) | ||||
| 
 | ||||
|     def forward(self, prediction:torch.Tensor, target: torch.Tensor): | ||||
| 
 | ||||
|         if prediction.size() != target.size() or target.ndim < 3: | ||||
|             raise TypeError(f"""Inputs must be of the same shape (batch_size,channels,samples)  | ||||
|                             got {prediction.size()} and {target.size()} instead""") | ||||
| 
 | ||||
|         return self.loss_fun(prediction, target) | ||||
| 
 | ||||
| class Avergeloss(nn.Module): | ||||
| 
 | ||||
|     def __init__(self,losses): | ||||
|         super().__init__() | ||||
| 
 | ||||
|         self.valid_losses = nn.ModuleList() | ||||
|         for loss in losses: | ||||
|             loss = self.validate_loss(loss) | ||||
|             self.valid_losses.append(loss()) | ||||
| 
 | ||||
| 
 | ||||
|     def validate_loss(self,loss:str): | ||||
|         if loss not in LOSS_MAP.keys(): | ||||
|             raise ValueError(f"Invalid loss function {loss}, available loss functions are {LOSS_MAP.keys()}") | ||||
|         else: | ||||
|             return LOSS_MAP[loss] | ||||
| 
 | ||||
|     def forward(self,prediction:torch.Tensor, target:torch.Tensor): | ||||
|         loss = 0.0 | ||||
|         for loss_fun in self.valid_losses: | ||||
|             loss += loss_fun(prediction, target) | ||||
|          | ||||
|         return loss | ||||
| 
 | ||||
|              | ||||
| 
 | ||||
| 
 | ||||
| LOSS_MAP = {"mea":mean_absolute_error, "mse": mean_squared_error} | ||||
| 
 | ||||
| 
 | ||||
		Loading…
	
		Reference in New Issue
	
	 shahules786
						shahules786