debug model

This commit is contained in:
shahules786 2022-09-12 10:54:36 +05:30
parent 05fe7ec317
commit c06566c132
1 changed files with 5 additions and 5 deletions

View File

@ -32,7 +32,7 @@ class DeLSTM(nn.Module):
class Demucs(Model): class Demucs(Model):
ED_DEFAULTS = { ED_DEFAULTS = {
"intial_output_channels":48, "initial_output_channels":48,
"kernel_size":8, "kernel_size":8,
"stride":1, "stride":1,
"depth":5, "depth":5,
@ -64,7 +64,7 @@ class Demucs(Model):
lstm = merge_dict(self.LSTM_DEFAULTS,lstm) lstm = merge_dict(self.LSTM_DEFAULTS,lstm)
self.save_hyperparameters("encoder_decoder","lstm","resample") self.save_hyperparameters("encoder_decoder","lstm","resample")
hidden = encoder_decoder["initial_channel_output"] hidden = encoder_decoder["initial_output_channels"]
activation = nn.GLU(1) if encoder_decoder["glu"] else nn.ReLU() activation = nn.GLU(1) if encoder_decoder["glu"] else nn.ReLU()
multi_factor = 2 if encoder_decoder["glu"] else 1 multi_factor = 2 if encoder_decoder["glu"] else 1
@ -90,7 +90,7 @@ class Demucs(Model):
self.decoder.insert(0,decoder_layer) self.decoder.insert(0,decoder_layer)
num_channels = hidden num_channels = hidden
hidden = self.growth_factor * hidden hidden = self.ED_DEFAULTS["growth_factor"] * hidden
self.de_lstm = DeLSTM(input_size=num_channels,hidden_size=num_channels,num_layers=lstm["num_layers"],bidirectional=lstm["bidirectional"]) self.de_lstm = DeLSTM(input_size=num_channels,hidden_size=num_channels,num_layers=lstm["num_layers"],bidirectional=lstm["bidirectional"])
@ -131,10 +131,10 @@ class Demucs(Model):
for layer in range(self.hparams.encoder_decoder["depth"]): # encoder operation for layer in range(self.hparams.encoder_decoder["depth"]): # encoder operation
input_length = math.ceil((input_length - self.kernel_size)/self.stride)+1 input_length = math.ceil((input_length - self.hparams.encoder_decoder["kernel_size"])/self.hparams.encoder_decoder["stride"])+1
input_length = max(1,input_length) input_length = max(1,input_length)
for layer in range(self.hparams.encoder_decoder["depth"]): # decoder operaration for layer in range(self.hparams.encoder_decoder["depth"]): # decoder operaration
input_length = (input_length-1) * self.stride + self.kernel_size input_length = (input_length-1) * self.hparams.encoder_decoder["stride"] + self.hparams.encoder_decoder["kernel_size"]
input_length = math.ceil(input_length/self.hparams.resample) input_length = math.ceil(input_length/self.hparams.resample)
return int(input_length) return int(input_length)