rename module

This commit is contained in:
shahules786 2022-08-31 11:05:14 +05:30
parent 5fa8d4059c
commit a939b4c37d
1 changed files with 0 additions and 64 deletions

View File

@ -1,64 +0,0 @@
import glob
import math
import numpy as np
import os
from scipy.io import wavfile
from torch.utils.data import IterableDataset
import torch.nn.functional as F
from enhancer.utils.random import create_unique_rng
from enhancer.utils.io import Audio
from enhancer.utils import Fileprocessor
class EnhancerDataset(IterableDataset):
"""Dataset object for creating clean-noisy speech enhancement datasets"""
def __init__(self,name:str,clean_dir,noisy_dir,duration=1.0,sampling_rate=48000, matching_function=None):
if not os.path.isdir(clean_dir):
raise ValueError(f"{clean_dir} is not a valid directory")
if not os.path.isdir(noisy_dir):
raise ValueError(f"{clean_dir} is not a valid directory")
self.sampling_rate = sampling_rate
self.clean_dir = clean_dir
self.noisy_dir = noisy_dir
self.duration = max(1.0,duration)
self.audio = Audio(self.sampling_rate,mono=True,return_tensor=True)
fp = Fileprocessor.from_name(name,clean_dir,noisy_dir,matching_function)
self.valid_files = fp.prepare_matching_dict()
def __iter__(self):
rng = create_unique_rng(12) ##pass epoch number here
while True:
file_dict,*_ = rng.choices(self.valid_files,k=1,
weights=[self.valid_files[file]['duration'] for file in self.valid_files])
file_duration = file_dict['duration']
start_time = round(rng.uniform(0,file_duration- self.duration),2)
data = self.prepare_segment(file_dict,start_time)
yield data
def prepare_segment(self,file_dict:dict, start_time:float):
clean_segment = self.audio(file_dict.keys()[0],
offset=start_time,duration=self.duration)
noisy_segment = self.audio(file_dict['noisy'],
offset=start_time,duration=self.duration)
clean_segment = F.pad(clean_segment,(0,int(self.duration*self.sampling_rate-clean_segment.shape[-1])))
noisy_segment = F.pad(noisy_segment,(0,int(self.duration*self.sampling_rate-noisy_segment.shape[-1])))
return {"clean": clean_segment,"noisy":noisy_segment}
def __len__(self):
return math.ceil(sum([file["duration"] for file in self.valid_files])/self.duration)