changes to prep dns 2020
This commit is contained in:
parent
6e0f69f575
commit
8d1c057b86
|
|
@ -40,4 +40,5 @@ repos:
|
|||
- id: end-of-file-fixer
|
||||
- id: requirements-txt-fixer
|
||||
- id: mixed-line-ending
|
||||
exclude: noisyspeech_synthesizer.cfg
|
||||
args: ['--fix=no']
|
||||
|
|
|
|||
|
|
@ -0,0 +1,76 @@
|
|||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Created on Wed Jun 26 15:54:05 2019
|
||||
|
||||
@author: chkarada
|
||||
"""
|
||||
import os
|
||||
|
||||
import numpy as np
|
||||
import soundfile as sf
|
||||
|
||||
|
||||
# Function to read audio
|
||||
def audioread(path, norm=True, start=0, stop=None):
|
||||
path = os.path.abspath(path)
|
||||
if not os.path.exists(path):
|
||||
raise ValueError("[{}] does not exist!".format(path))
|
||||
try:
|
||||
x, sr = sf.read(path, start=start, stop=stop)
|
||||
except RuntimeError: # fix for sph pcm-embedded shortened v2
|
||||
print("WARNING: Audio type not supported")
|
||||
|
||||
if len(x.shape) == 1: # mono
|
||||
if norm:
|
||||
rms = (x**2).mean() ** 0.5
|
||||
scalar = 10 ** (-25 / 20) / (rms)
|
||||
x = x * scalar
|
||||
return x, sr
|
||||
else: # multi-channel
|
||||
x = x.T
|
||||
x = x.sum(axis=0) / x.shape[0]
|
||||
if norm:
|
||||
rms = (x**2).mean() ** 0.5
|
||||
scalar = 10 ** (-25 / 20) / (rms)
|
||||
x = x * scalar
|
||||
return x, sr
|
||||
|
||||
|
||||
# Funtion to write audio
|
||||
def audiowrite(data, fs, destpath, norm=False):
|
||||
if norm:
|
||||
eps = 0.0
|
||||
rms = (data**2).mean() ** 0.5
|
||||
scalar = 10 ** (-25 / 10) / (rms + eps)
|
||||
data = data * scalar
|
||||
if max(abs(data)) >= 1:
|
||||
data = data / max(abs(data), eps)
|
||||
|
||||
destpath = os.path.abspath(destpath)
|
||||
destdir = os.path.dirname(destpath)
|
||||
|
||||
if not os.path.exists(destdir):
|
||||
os.makedirs(destdir)
|
||||
|
||||
sf.write(destpath, data, fs)
|
||||
return
|
||||
|
||||
|
||||
# Function to mix clean speech and noise at various SNR levels
|
||||
def snr_mixer(clean, noise, snr):
|
||||
# Normalizing to -25 dB FS
|
||||
rmsclean = (clean**2).mean() ** 0.5
|
||||
scalarclean = 10 ** (-25 / 20) / rmsclean
|
||||
clean = clean * scalarclean
|
||||
rmsclean = (clean**2).mean() ** 0.5
|
||||
|
||||
rmsnoise = (noise**2).mean() ** 0.5
|
||||
scalarnoise = 10 ** (-25 / 20) / rmsnoise
|
||||
noise = noise * scalarnoise
|
||||
rmsnoise = (noise**2).mean() ** 0.5
|
||||
|
||||
# Set the noise level for a given SNR
|
||||
noisescalar = np.sqrt(rmsclean / (10 ** (snr / 20)) / rmsnoise)
|
||||
noisenewlevel = noise * noisescalar
|
||||
noisyspeech = clean + noisenewlevel
|
||||
return clean, noisenewlevel, noisyspeech
|
||||
|
|
@ -34,6 +34,6 @@ pwd
|
|||
|
||||
#python transcriber/tasks/embeddings/timit.py --directory /scratch/$USER/TIMIT/data/lisa/data/timit/raw/TIMIT/TRAIN --output ./data/train
|
||||
#python transcriber/tasks/embeddings/timit.py --directory /scratch/$USER/TIMIT/data/lisa/data/timit/raw/TIMIT/TEST --output ./data/test
|
||||
|
||||
python noisyspeech_synthesizer.py
|
||||
echo "Start Training..."
|
||||
python enhancer/cli/train.py
|
||||
#python enhancer/cli/train.py
|
||||
|
|
|
|||
|
|
@ -0,0 +1,29 @@
|
|||
# Configuration for generating Noisy Speech Dataset
|
||||
|
||||
# - sampling_rate: Specify the sampling rate. Default is 16 kHz
|
||||
# - audioformat: default is .wav
|
||||
# - audio_length: Minimum Length of each audio clip (noisy and clean speech) in seconds that will be generated by augmenting utterances.
|
||||
# - silence_length: Duration of silence introduced between clean speech utterances.
|
||||
# - total_hours: Total number of hours of data required. Units are in hours.
|
||||
# - snr_lower: Lower bound for SNR required (default: 0 dB)
|
||||
# - snr_upper: Upper bound for SNR required (default: 40 dB)
|
||||
# - total_snrlevels: Number of SNR levels required (default: 5, which means there are 5 levels between snr_lower and snr_upper)
|
||||
# - noise_dir: Default is None. But specify the noise directory path if noise files are not in the source directory
|
||||
# - Speech_dir: Default is None. But specify the speech directory path if speech files are not in the source directory
|
||||
# - noise_types_excluded: Noise files starting with the following tags to be excluded in the noise list. Example: noise_types_excluded: Babble, AirConditioner
|
||||
# Specify 'None' if no noise files to be excluded.
|
||||
|
||||
[noisy_speech]
|
||||
|
||||
sampling_rate: 16000
|
||||
audioformat: *.wav
|
||||
audio_length: 10
|
||||
silence_length: 0.2
|
||||
total_hours: 20
|
||||
snr_lower: 0
|
||||
snr_upper: 40
|
||||
total_snrlevels: 5
|
||||
|
||||
noise_dir: /scratch/c.sistc3/MS-SNSD/noise_train
|
||||
speech_dir: /scratch/c.sistc3/MS-SNSD/clean_train
|
||||
noise_types_excluded: None
|
||||
|
|
@ -0,0 +1,153 @@
|
|||
"""
|
||||
@author: chkarada
|
||||
"""
|
||||
import argparse
|
||||
import configparser as CP
|
||||
import glob
|
||||
import os
|
||||
|
||||
import numpy as np
|
||||
|
||||
from audiolib import audioread, audiowrite, snr_mixer
|
||||
|
||||
|
||||
def main(cfg):
|
||||
snr_lower = float(cfg["snr_lower"])
|
||||
snr_upper = float(cfg["snr_upper"])
|
||||
total_snrlevels = int(cfg["total_snrlevels"])
|
||||
|
||||
clean_dir = os.path.join(os.path.dirname(__file__), "clean_train")
|
||||
if cfg["speech_dir"] != "None":
|
||||
clean_dir = cfg["speech_dir"]
|
||||
if not os.path.exists(clean_dir):
|
||||
assert False, "Clean speech data is required"
|
||||
|
||||
noise_dir = os.path.join(os.path.dirname(__file__), "noise_train")
|
||||
if cfg["noise_dir"] != "None":
|
||||
noise_dir = cfg["noise_dir"]
|
||||
if not os.path.exists(noise_dir):
|
||||
assert False, "Noise data is required"
|
||||
|
||||
fs = float(cfg["sampling_rate"])
|
||||
audioformat = cfg["audioformat"]
|
||||
total_hours = float(cfg["total_hours"])
|
||||
audio_length = float(cfg["audio_length"])
|
||||
silence_length = float(cfg["silence_length"])
|
||||
noisyspeech_dir = os.path.join(
|
||||
os.path.dirname(__file__), "NoisySpeech_training"
|
||||
)
|
||||
if not os.path.exists(noisyspeech_dir):
|
||||
os.makedirs(noisyspeech_dir)
|
||||
clean_proc_dir = os.path.join(
|
||||
os.path.dirname(__file__), "CleanSpeech_training"
|
||||
)
|
||||
if not os.path.exists(clean_proc_dir):
|
||||
os.makedirs(clean_proc_dir)
|
||||
noise_proc_dir = os.path.join(os.path.dirname(__file__), "Noise_training")
|
||||
if not os.path.exists(noise_proc_dir):
|
||||
os.makedirs(noise_proc_dir)
|
||||
|
||||
total_secs = total_hours * 60 * 60
|
||||
total_samples = int(total_secs * fs)
|
||||
audio_length = int(audio_length * fs)
|
||||
SNR = np.linspace(snr_lower, snr_upper, total_snrlevels)
|
||||
cleanfilenames = glob.glob(os.path.join(clean_dir, audioformat))
|
||||
if cfg["noise_types_excluded"] == "None":
|
||||
noisefilenames = glob.glob(os.path.join(noise_dir, audioformat))
|
||||
else:
|
||||
filestoexclude = cfg["noise_types_excluded"].split(",")
|
||||
noisefilenames = glob.glob(os.path.join(noise_dir, audioformat))
|
||||
for i in range(len(filestoexclude)):
|
||||
noisefilenames = [
|
||||
fn
|
||||
for fn in noisefilenames
|
||||
if not os.path.basename(fn).startswith(filestoexclude[i])
|
||||
]
|
||||
|
||||
filecounter = 0
|
||||
num_samples = 0
|
||||
|
||||
while num_samples < total_samples:
|
||||
idx_s = np.random.randint(0, np.size(cleanfilenames))
|
||||
clean, fs = audioread(cleanfilenames[idx_s])
|
||||
|
||||
if len(clean) > audio_length:
|
||||
clean = clean
|
||||
|
||||
else:
|
||||
|
||||
while len(clean) <= audio_length:
|
||||
idx_s = idx_s + 1
|
||||
if idx_s >= np.size(cleanfilenames) - 1:
|
||||
idx_s = np.random.randint(0, np.size(cleanfilenames))
|
||||
newclean, fs = audioread(cleanfilenames[idx_s])
|
||||
cleanconcat = np.append(
|
||||
clean, np.zeros(int(fs * silence_length))
|
||||
)
|
||||
clean = np.append(cleanconcat, newclean)
|
||||
|
||||
idx_n = np.random.randint(0, np.size(noisefilenames))
|
||||
noise, fs = audioread(noisefilenames[idx_n])
|
||||
|
||||
if len(noise) >= len(clean):
|
||||
noise = noise[0 : len(clean)]
|
||||
|
||||
else:
|
||||
|
||||
while len(noise) <= len(clean):
|
||||
idx_n = idx_n + 1
|
||||
if idx_n >= np.size(noisefilenames) - 1:
|
||||
idx_n = np.random.randint(0, np.size(noisefilenames))
|
||||
newnoise, fs = audioread(noisefilenames[idx_n])
|
||||
noiseconcat = np.append(
|
||||
noise, np.zeros(int(fs * silence_length))
|
||||
)
|
||||
noise = np.append(noiseconcat, newnoise)
|
||||
noise = noise[0 : len(clean)]
|
||||
filecounter = filecounter + 1
|
||||
|
||||
for i in range(np.size(SNR)):
|
||||
clean_snr, noise_snr, noisy_snr = snr_mixer(
|
||||
clean=clean, noise=noise, snr=SNR[i]
|
||||
)
|
||||
noisyfilename = (
|
||||
"noisy"
|
||||
+ str(filecounter)
|
||||
+ "_SNRdb_"
|
||||
+ str(SNR[i])
|
||||
+ "_clnsp"
|
||||
+ str(filecounter)
|
||||
+ ".wav"
|
||||
)
|
||||
cleanfilename = "clnsp" + str(filecounter) + ".wav"
|
||||
noisefilename = (
|
||||
"noisy" + str(filecounter) + "_SNRdb_" + str(SNR[i]) + ".wav"
|
||||
)
|
||||
noisypath = os.path.join(noisyspeech_dir, noisyfilename)
|
||||
cleanpath = os.path.join(clean_proc_dir, cleanfilename)
|
||||
noisepath = os.path.join(noise_proc_dir, noisefilename)
|
||||
audiowrite(noisy_snr, fs, noisypath, norm=False)
|
||||
audiowrite(clean_snr, fs, cleanpath, norm=False)
|
||||
audiowrite(noise_snr, fs, noisepath, norm=False)
|
||||
num_samples = num_samples + len(noisy_snr)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
|
||||
# Configurations: read noisyspeech_synthesizer.cfg
|
||||
parser.add_argument(
|
||||
"--cfg",
|
||||
default="noisyspeech_synthesizer.cfg",
|
||||
help="Read noisyspeech_synthesizer.cfg for all the details",
|
||||
)
|
||||
parser.add_argument("--cfg_str", type=str, default="noisy_speech")
|
||||
args = parser.parse_args()
|
||||
|
||||
cfgpath = os.path.join(os.path.dirname(__file__), args.cfg)
|
||||
assert os.path.exists(cfgpath), f"No configuration file as [{cfgpath}]"
|
||||
cfg = CP.ConfigParser()
|
||||
cfg._interpolation = CP.ExtendedInterpolation()
|
||||
cfg.read(cfgpath)
|
||||
|
||||
main(cfg._sections[args.cfg_str])
|
||||
|
|
@ -2,7 +2,6 @@
|
|||
line-length = 80
|
||||
target-version = ['py38']
|
||||
exclude = '''
|
||||
|
||||
(
|
||||
/(
|
||||
\.eggs # exclude a few common directories in the
|
||||
|
|
@ -10,6 +9,9 @@ exclude = '''
|
|||
| \.mypy_cache
|
||||
| \.tox
|
||||
| \.venv
|
||||
| noisyspeech_synthesizer.py
|
||||
| noisyspeech_synthesizer.cfg
|
||||
|
||||
)/
|
||||
)
|
||||
'''
|
||||
|
|
|
|||
|
|
@ -1,18 +1,19 @@
|
|||
boto3>=1.24.86
|
||||
huggingface-hub>=0.10.0
|
||||
hydra-core>=1.2.0
|
||||
joblib>=1.2.0
|
||||
librosa>=0.9.2
|
||||
mlflow>=1.29.0
|
||||
# torch>=1.12.1
|
||||
# torchaudio>=0.12.1
|
||||
# tqdm>=4.64.1
|
||||
configparser
|
||||
# boto3>=1.24.86
|
||||
# huggingface-hub>=0.10.0
|
||||
# hydra-core>=1.2.0
|
||||
# joblib>=1.2.0
|
||||
# librosa>=0.9.2
|
||||
# mlflow>=1.29.0
|
||||
numpy>=1.23.3
|
||||
pesq==0.0.4
|
||||
protobuf>=3.19.6
|
||||
pystoi==0.3.3
|
||||
pytest-lazy-fixture>=0.6.3
|
||||
pytorch-lightning>=1.7.7
|
||||
scikit-learn>=1.1.2
|
||||
# pesq==0.0.4
|
||||
# protobuf>=3.19.6
|
||||
# pystoi==0.3.3
|
||||
# pytest-lazy-fixture>=0.6.3
|
||||
# pytorch-lightning>=1.7.7
|
||||
# scikit-learn>=1.1.2
|
||||
scipy>=1.9.1
|
||||
soundfile>=0.11.0
|
||||
torch>=1.12.1
|
||||
torchaudio>=0.12.1
|
||||
tqdm>=4.64.1
|
||||
|
|
|
|||
Loading…
Reference in New Issue