black
This commit is contained in:
parent
80d6795b61
commit
8ac01b846d
|
|
@ -1,4 +1,3 @@
|
||||||
from genericpath import isfile
|
|
||||||
import os
|
import os
|
||||||
from types import MethodType
|
from types import MethodType
|
||||||
import hydra
|
import hydra
|
||||||
|
|
@ -7,61 +6,79 @@ from omegaconf import DictConfig
|
||||||
from torch.optim.lr_scheduler import ReduceLROnPlateau
|
from torch.optim.lr_scheduler import ReduceLROnPlateau
|
||||||
from pytorch_lightning.callbacks import ModelCheckpoint, EarlyStopping
|
from pytorch_lightning.callbacks import ModelCheckpoint, EarlyStopping
|
||||||
from pytorch_lightning.loggers import MLFlowLogger
|
from pytorch_lightning.loggers import MLFlowLogger
|
||||||
os.environ["HYDRA_FULL_ERROR"] = "1"
|
|
||||||
JOB_ID = os.environ.get("SLURM_JOBID","0")
|
|
||||||
|
|
||||||
@hydra.main(config_path="train_config",config_name="config")
|
os.environ["HYDRA_FULL_ERROR"] = "1"
|
||||||
|
JOB_ID = os.environ.get("SLURM_JOBID", "0")
|
||||||
|
|
||||||
|
|
||||||
|
@hydra.main(config_path="train_config", config_name="config")
|
||||||
def main(config: DictConfig):
|
def main(config: DictConfig):
|
||||||
|
|
||||||
callbacks = []
|
callbacks = []
|
||||||
logger = MLFlowLogger(experiment_name=config.mlflow.experiment_name,
|
logger = MLFlowLogger(
|
||||||
run_name=config.mlflow.run_name, tags={"JOB_ID":JOB_ID})
|
experiment_name=config.mlflow.experiment_name,
|
||||||
|
run_name=config.mlflow.run_name,
|
||||||
|
tags={"JOB_ID": JOB_ID},
|
||||||
|
)
|
||||||
|
|
||||||
parameters = config.hyperparameters
|
parameters = config.hyperparameters
|
||||||
|
|
||||||
dataset = instantiate(config.dataset)
|
dataset = instantiate(config.dataset)
|
||||||
model = instantiate(config.model,dataset=dataset,lr=parameters.get("lr"),
|
model = instantiate(
|
||||||
loss=parameters.get("loss"), metric = parameters.get("metric"))
|
config.model,
|
||||||
|
dataset=dataset,
|
||||||
|
lr=parameters.get("lr"),
|
||||||
|
loss=parameters.get("loss"),
|
||||||
|
metric=parameters.get("metric"),
|
||||||
|
)
|
||||||
|
|
||||||
direction = model.valid_monitor
|
direction = model.valid_monitor
|
||||||
checkpoint = ModelCheckpoint(
|
checkpoint = ModelCheckpoint(
|
||||||
dirpath="./model",filename=f"model_{JOB_ID}",monitor="val_loss",verbose=True,
|
dirpath="./model",
|
||||||
mode=direction,every_n_epochs=1
|
filename=f"model_{JOB_ID}",
|
||||||
|
monitor="val_loss",
|
||||||
|
verbose=True,
|
||||||
|
mode=direction,
|
||||||
|
every_n_epochs=1,
|
||||||
)
|
)
|
||||||
callbacks.append(checkpoint)
|
callbacks.append(checkpoint)
|
||||||
early_stopping = EarlyStopping(
|
early_stopping = EarlyStopping(
|
||||||
monitor="val_loss",
|
monitor="val_loss",
|
||||||
mode=direction,
|
mode=direction,
|
||||||
min_delta=0.0,
|
min_delta=0.0,
|
||||||
patience=parameters.get("EarlyStopping_patience",10),
|
patience=parameters.get("EarlyStopping_patience", 10),
|
||||||
strict=True,
|
strict=True,
|
||||||
verbose=False,
|
verbose=False,
|
||||||
)
|
)
|
||||||
callbacks.append(early_stopping)
|
callbacks.append(early_stopping)
|
||||||
|
|
||||||
def configure_optimizer(self):
|
def configure_optimizer(self):
|
||||||
optimizer = instantiate(config.optimizer,lr=parameters.get("lr"),parameters=self.parameters())
|
optimizer = instantiate(
|
||||||
|
config.optimizer,
|
||||||
|
lr=parameters.get("lr"),
|
||||||
|
parameters=self.parameters(),
|
||||||
|
)
|
||||||
scheduler = ReduceLROnPlateau(
|
scheduler = ReduceLROnPlateau(
|
||||||
optimizer=optimizer,
|
optimizer=optimizer,
|
||||||
mode=direction,
|
mode=direction,
|
||||||
factor=parameters.get("ReduceLr_factor",0.1),
|
factor=parameters.get("ReduceLr_factor", 0.1),
|
||||||
verbose=True,
|
verbose=True,
|
||||||
min_lr=parameters.get("min_lr",1e-6),
|
min_lr=parameters.get("min_lr", 1e-6),
|
||||||
patience=parameters.get("ReduceLr_patience",3)
|
patience=parameters.get("ReduceLr_patience", 3),
|
||||||
)
|
)
|
||||||
return {"optimizer":optimizer, "lr_scheduler":scheduler}
|
return {"optimizer": optimizer, "lr_scheduler": scheduler}
|
||||||
|
|
||||||
model.configure_parameters = MethodType(configure_optimizer,model)
|
model.configure_parameters = MethodType(configure_optimizer, model)
|
||||||
|
|
||||||
trainer = instantiate(config.trainer,logger=logger,callbacks=callbacks)
|
trainer = instantiate(config.trainer, logger=logger, callbacks=callbacks)
|
||||||
trainer.fit(model)
|
trainer.fit(model)
|
||||||
|
|
||||||
saved_location = os.path.join(trainer.default_root_dir,"model",f"model_{JOB_ID}.ckpt")
|
saved_location = os.path.join(
|
||||||
|
trainer.default_root_dir, "model", f"model_{JOB_ID}.ckpt"
|
||||||
|
)
|
||||||
if os.path.isfile(saved_location):
|
if os.path.isfile(saved_location):
|
||||||
logger.experiment.log_artifact(logger.run_id,saved_location)
|
logger.experiment.log_artifact(logger.run_id, saved_location)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
if __name__=="__main__":
|
|
||||||
main()
|
main()
|
||||||
Loading…
Reference in New Issue