add doc/refactor black
This commit is contained in:
parent
d31a6d2ebd
commit
7f00707733
|
|
@ -1,9 +1,7 @@
|
|||
from json import load
|
||||
import wave
|
||||
import numpy as np
|
||||
from scipy.signal import get_window
|
||||
from scipy.io import wavfile
|
||||
from typing import List, Optional, Union
|
||||
from typing import Optional, Union
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
from pathlib import Path
|
||||
|
|
@ -11,89 +9,153 @@ from librosa import load as load_audio
|
|||
|
||||
from enhancer.utils import Audio
|
||||
|
||||
|
||||
class Inference:
|
||||
"""
|
||||
contains methods used for inference.
|
||||
"""
|
||||
|
||||
@staticmethod
|
||||
def read_input(audio, sr, model_sr):
|
||||
"""
|
||||
read and verify audio input regardless of the input format.
|
||||
arguments:
|
||||
audio : audio input
|
||||
sr : sampling rate of input audio
|
||||
model_sr : sampling rate used for model training.
|
||||
"""
|
||||
|
||||
if isinstance(audio,(np.ndarray,torch.Tensor)):
|
||||
if isinstance(audio, (np.ndarray, torch.Tensor)):
|
||||
assert sr is not None, "Invalid sampling rate!"
|
||||
|
||||
if isinstance(audio,str):
|
||||
if isinstance(audio, str):
|
||||
audio = Path(audio)
|
||||
if not audio.is_file():
|
||||
raise ValueError(f"Input file {audio} does not exist")
|
||||
else:
|
||||
audio,sr = load_audio(audio,sr=sr,)
|
||||
audio, sr = load_audio(
|
||||
audio,
|
||||
sr=sr,
|
||||
)
|
||||
if len(audio.shape) == 1:
|
||||
audio = audio.reshape(1,-1)
|
||||
audio = audio.reshape(1, -1)
|
||||
else:
|
||||
assert audio.shape[0] == 1, "Enhance inference only supports single waveform"
|
||||
assert (
|
||||
audio.shape[0] == 1
|
||||
), "Enhance inference only supports single waveform"
|
||||
|
||||
waveform = Audio.resample_audio(audio,sr=sr,target_sr=model_sr)
|
||||
waveform = Audio.resample_audio(audio, sr=sr, target_sr=model_sr)
|
||||
waveform = Audio.convert_mono(waveform)
|
||||
if isinstance(waveform,np.ndarray):
|
||||
if isinstance(waveform, np.ndarray):
|
||||
waveform = torch.from_numpy(waveform)
|
||||
|
||||
return waveform
|
||||
|
||||
@staticmethod
|
||||
def batchify(waveform: torch.Tensor, window_size:int, step_size:Optional[int]=None):
|
||||
def batchify(
|
||||
waveform: torch.Tensor,
|
||||
window_size: int,
|
||||
step_size: Optional[int] = None,
|
||||
):
|
||||
"""
|
||||
break input waveform into samples with duration specified.
|
||||
break input waveform into samples with duration specified.(Overlap-add)
|
||||
arguments:
|
||||
waveform : audio waveform
|
||||
window_size : window size used for splitting waveform into batches
|
||||
step_size : step_size used for splitting waveform into batches
|
||||
"""
|
||||
assert waveform.ndim == 2, f"Expcted input waveform with 2 dimensions (channels,samples), got {waveform.ndim}"
|
||||
_,num_samples = waveform.shape
|
||||
assert (
|
||||
waveform.ndim == 2
|
||||
), f"Expcted input waveform with 2 dimensions (channels,samples), got {waveform.ndim}"
|
||||
_, num_samples = waveform.shape
|
||||
waveform = waveform.unsqueeze(-1)
|
||||
step_size = window_size//2 if step_size is None else step_size
|
||||
step_size = window_size // 2 if step_size is None else step_size
|
||||
|
||||
if num_samples >= window_size:
|
||||
waveform_batch = F.unfold(waveform[None,...], kernel_size=(window_size,1),
|
||||
stride=(step_size,1), padding=(window_size,0))
|
||||
waveform_batch = waveform_batch.permute(2,0,1)
|
||||
|
||||
|
||||
waveform_batch = F.unfold(
|
||||
waveform[None, ...],
|
||||
kernel_size=(window_size, 1),
|
||||
stride=(step_size, 1),
|
||||
padding=(window_size, 0),
|
||||
)
|
||||
waveform_batch = waveform_batch.permute(2, 0, 1)
|
||||
|
||||
return waveform_batch
|
||||
|
||||
@staticmethod
|
||||
def aggreagate(data:torch.Tensor,window_size:int,total_frames:int,step_size:Optional[int]=None,
|
||||
window="hanning",):
|
||||
def aggreagate(
|
||||
data: torch.Tensor,
|
||||
window_size: int,
|
||||
total_frames: int,
|
||||
step_size: Optional[int] = None,
|
||||
window="hanning",
|
||||
):
|
||||
"""
|
||||
takes input as tensor outputs aggregated waveform
|
||||
stitch batched waveform into single waveform. (Overlap-add)
|
||||
arguments:
|
||||
data: batched waveform
|
||||
window_size : window_size used to batch waveform
|
||||
step_size : step_size used to batch waveform
|
||||
total_frames : total number of frames present in original waveform
|
||||
window : type of window used for overlap-add mechanism.
|
||||
"""
|
||||
num_chunks,n_channels,num_frames = data.shape
|
||||
window = get_window(window=window,Nx=data.shape[-1])
|
||||
num_chunks, n_channels, num_frames = data.shape
|
||||
window = get_window(window=window, Nx=data.shape[-1])
|
||||
window = torch.from_numpy(window).to(data.device)
|
||||
data *= window
|
||||
|
||||
data = data.permute(1,2,0)
|
||||
data = F.fold(data,
|
||||
(total_frames,1),
|
||||
kernel_size=(window_size,1),
|
||||
stride=(step_size,1),
|
||||
padding=(window_size,0)).squeeze(-1)
|
||||
data = data.permute(1, 2, 0)
|
||||
data = F.fold(
|
||||
data,
|
||||
(total_frames, 1),
|
||||
kernel_size=(window_size, 1),
|
||||
stride=(step_size, 1),
|
||||
padding=(window_size, 0),
|
||||
).squeeze(-1)
|
||||
|
||||
return data.reshape(1,n_channels,-1)
|
||||
return data.reshape(1, n_channels, -1)
|
||||
|
||||
@staticmethod
|
||||
def write_output(waveform:torch.Tensor,filename:Union[str,Path],sr:int):
|
||||
def write_output(
|
||||
waveform: torch.Tensor, filename: Union[str, Path], sr: int
|
||||
):
|
||||
"""
|
||||
write audio output as wav file
|
||||
arguments:
|
||||
waveform : audio waveform
|
||||
filename : name of the wave file. Output will be written as cleaned_filename.wav
|
||||
sr : sampling rate
|
||||
"""
|
||||
|
||||
if isinstance(filename,str):
|
||||
if isinstance(filename, str):
|
||||
filename = Path(filename)
|
||||
if filename.is_file():
|
||||
raise FileExistsError(f"file {filename} already exists")
|
||||
else:
|
||||
wavfile.write(filename,rate=sr,data=waveform.detach().cpu())
|
||||
|
||||
wavfile.write(filename, rate=sr, data=waveform.detach().cpu())
|
||||
|
||||
@staticmethod
|
||||
def prepare_output(
|
||||
waveform: torch.Tensor,
|
||||
model_sampling_rate: int,
|
||||
audio: Union[str, np.ndarray, torch.Tensor],
|
||||
sampling_rate: Optional[int],
|
||||
):
|
||||
"""
|
||||
prepare output audio based on input format
|
||||
arguments:
|
||||
waveform : predicted audio waveform
|
||||
model_sampling_rate : sampling rate used to train the model
|
||||
audio : input audio
|
||||
sampling_rate : input audio sampling rate
|
||||
|
||||
"""
|
||||
if isinstance(audio, np.ndarray):
|
||||
waveform = waveform.detach().cpu().numpy()
|
||||
|
||||
if sampling_rate is not None:
|
||||
waveform = Audio.resample_audio(
|
||||
waveform, sr=model_sampling_rate, target_sr=sampling_rate
|
||||
)
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
return waveform
|
||||
|
|
|
|||
Loading…
Reference in New Issue