rename package
This commit is contained in:
parent
1abc450ef8
commit
7838e744a9
2
.flake8
2
.flake8
|
|
@ -1,5 +1,5 @@
|
|||
[flake8]
|
||||
per-file-ignores = __init__.py:F401
|
||||
per-file-ignores = "mayavoz/model/__init__.py:F401"
|
||||
ignore = E203, E266, E501, W503
|
||||
# line length is intentionally set to 80 here because black uses Bugbear
|
||||
# See https://github.com/psf/black/blob/master/README.md#line-length for more details
|
||||
|
|
|
|||
|
|
@ -1,7 +1,7 @@
|
|||
# This workflow will install Python dependencies, run tests and lint with a variety of Python versions
|
||||
# For more information see: https://help.github.com/actions/language-and-framework-guides/using-python-with-github-actions
|
||||
|
||||
name: Enhancer
|
||||
name: mayavoz
|
||||
|
||||
on:
|
||||
push:
|
||||
|
|
@ -40,12 +40,12 @@ jobs:
|
|||
sudo apt-get install libsndfile1
|
||||
pip install -r requirements.txt
|
||||
pip install black pytest-cov
|
||||
- name: Install enhancer
|
||||
- name: Install mayavoz
|
||||
run: |
|
||||
pip install -e .[dev,testing]
|
||||
- name: Run black
|
||||
run:
|
||||
black --check . --exclude enhancer/version.py
|
||||
black --check . --exclude mayavoz/version.py
|
||||
- name: Test with pytest
|
||||
run:
|
||||
pytest tests --cov=enhancer/
|
||||
pytest tests --cov=mayavoz/
|
||||
|
|
|
|||
|
|
@ -23,6 +23,7 @@ repos:
|
|||
hooks:
|
||||
- id: flake8
|
||||
args: ['--ignore=E203,E501,F811,E712,W503']
|
||||
exclude: __init__.py
|
||||
|
||||
# Formatting, Whitespace, etc
|
||||
- repo: https://github.com/pre-commit/pre-commit-hooks
|
||||
|
|
|
|||
|
|
@ -1,13 +0,0 @@
|
|||
_target_: enhancer.data.dataset.EnhancerDataset
|
||||
name : vctk
|
||||
root_dir : /Users/shahules/Myprojects/enhancer/datasets/vctk
|
||||
duration : 1.0
|
||||
sampling_rate: 16000
|
||||
batch_size: 64
|
||||
num_workers : 0
|
||||
|
||||
files:
|
||||
train_clean : clean_testset_wav
|
||||
test_clean : clean_testset_wav
|
||||
train_noisy : noisy_testset_wav
|
||||
test_noisy : noisy_testset_wav
|
||||
|
|
@ -1 +0,0 @@
|
|||
from enhancer.data.dataset import EnhancerDataset
|
||||
|
|
@ -1,3 +0,0 @@
|
|||
from enhancer.models.demucs import Demucs
|
||||
from enhancer.models.model import Model
|
||||
from enhancer.models.waveunet import WaveUnet
|
||||
|
|
@ -1,5 +0,0 @@
|
|||
from enhancer.models.complexnn.conv import ComplexConv2d # noqa
|
||||
from enhancer.models.complexnn.conv import ComplexConvTranspose2d # noqa
|
||||
from enhancer.models.complexnn.rnn import ComplexLSTM # noqa
|
||||
from enhancer.models.complexnn.utils import ComplexBatchNorm2D # noqa
|
||||
from enhancer.models.complexnn.utils import ComplexRelu # noqa
|
||||
|
|
@ -1,3 +0,0 @@
|
|||
from enhancer.utils.config import Files
|
||||
from enhancer.utils.io import Audio
|
||||
from enhancer.utils.utils import check_files
|
||||
|
|
@ -1,4 +1,4 @@
|
|||
name: enhancer
|
||||
name: mayavoz
|
||||
|
||||
dependencies:
|
||||
- pip=21.0.1
|
||||
|
|
|
|||
|
|
@ -1,4 +1,4 @@
|
|||
_target_: enhancer.data.dataset.EnhancerDataset
|
||||
_target_: mayavoz.data.dataset.EnhancerDataset
|
||||
root_dir : /Users/shahules/Myprojects/MS-SNSD
|
||||
name : dns-2020
|
||||
duration : 2.0
|
||||
|
|
@ -1,4 +1,4 @@
|
|||
_target_: enhancer.data.dataset.EnhancerDataset
|
||||
_target_: mayavoz.data.dataset.EnhancerDataset
|
||||
name : vctk
|
||||
root_dir : /scratch/c.sistc3/DS_10283_2791
|
||||
duration : 4.5
|
||||
|
|
@ -1,2 +1,2 @@
|
|||
experiment_name : shahules/enhancer
|
||||
experiment_name : shahules/mayavoz
|
||||
run_name : Demucs + Vtck with stride + augmentations
|
||||
|
|
@ -1,4 +1,4 @@
|
|||
_target_: enhancer.models.dccrn.DCCRN
|
||||
_target_: mayavoz.models.dccrn.DCCRN
|
||||
num_channels: 1
|
||||
sampling_rate : 16000
|
||||
complex_lstm : True
|
||||
|
|
@ -1,4 +1,4 @@
|
|||
_target_: enhancer.models.demucs.Demucs
|
||||
_target_: mayavoz.models.demucs.Demucs
|
||||
num_channels: 1
|
||||
resample: 4
|
||||
sampling_rate : 16000
|
||||
|
|
@ -1,4 +1,4 @@
|
|||
_target_: enhancer.models.waveunet.WaveUnet
|
||||
_target_: mayavoz.models.waveunet.WaveUnet
|
||||
num_channels : 1
|
||||
depth : 9
|
||||
initial_output_channels: 24
|
||||
|
|
@ -0,0 +1 @@
|
|||
from mayavoz.data.dataset import EnhancerDataset
|
||||
|
|
@ -11,11 +11,11 @@ import torch.nn.functional as F
|
|||
from torch.utils.data import DataLoader, Dataset, RandomSampler
|
||||
from torch_audiomentations import Compose
|
||||
|
||||
from enhancer.data.fileprocessor import Fileprocessor
|
||||
from enhancer.utils import check_files
|
||||
from enhancer.utils.config import Files
|
||||
from enhancer.utils.io import Audio
|
||||
from enhancer.utils.random import create_unique_rng
|
||||
from mayavoz.data.fileprocessor import Fileprocessor
|
||||
from mayavoz.utils import check_files
|
||||
from mayavoz.utils.config import Files
|
||||
from mayavoz.utils.io import Audio
|
||||
from mayavoz.utils.random import create_unique_rng
|
||||
|
||||
LARGE_NUM = 2147483647
|
||||
|
||||
|
|
@ -258,7 +258,7 @@ class EnhancerDataset(TaskDataset):
|
|||
root directory of the dataset containing clean/noisy folders
|
||||
files : Files
|
||||
dataclass containing train_clean, train_noisy, test_clean, test_noisy
|
||||
folder names (refer enhancer.utils.Files dataclass)
|
||||
folder names (refer mayavoz.utils.Files dataclass)
|
||||
min_valid_minutes: float
|
||||
minimum validation split size time in minutes
|
||||
algorithm randomly select n speakers (>=min_valid_minutes) from train data to form validation data.
|
||||
|
|
@ -8,7 +8,7 @@ from librosa import load as load_audio
|
|||
from scipy.io import wavfile
|
||||
from scipy.signal import get_window
|
||||
|
||||
from enhancer.utils import Audio
|
||||
from mayavoz.utils import Audio
|
||||
|
||||
|
||||
class Inference:
|
||||
|
|
@ -0,0 +1,3 @@
|
|||
from mayavoz.models.demucs import Demucs
|
||||
from mayavoz.models.model import Model
|
||||
from mayavoz.models.waveunet import WaveUnet
|
||||
|
|
@ -0,0 +1,5 @@
|
|||
from mayavoz.models.complexnn.conv import ComplexConv2d # noqa
|
||||
from mayavoz.models.complexnn.conv import ComplexConvTranspose2d # noqa
|
||||
from mayavoz.models.complexnn.rnn import ComplexLSTM # noqa
|
||||
from mayavoz.models.complexnn.utils import ComplexBatchNorm2D # noqa
|
||||
from mayavoz.models.complexnn.utils import ComplexRelu # noqa
|
||||
|
|
@ -5,18 +5,18 @@ import torch
|
|||
import torch.nn.functional as F
|
||||
from torch import nn
|
||||
|
||||
from enhancer.data import EnhancerDataset
|
||||
from enhancer.models import Model
|
||||
from enhancer.models.complexnn import (
|
||||
from mayavoz.data import EnhancerDataset
|
||||
from mayavoz.models import Model
|
||||
from mayavoz.models.complexnn import (
|
||||
ComplexBatchNorm2D,
|
||||
ComplexConv2d,
|
||||
ComplexConvTranspose2d,
|
||||
ComplexLSTM,
|
||||
ComplexRelu,
|
||||
)
|
||||
from enhancer.models.complexnn.utils import complex_cat
|
||||
from enhancer.utils.transforms import ConviSTFT, ConvSTFT
|
||||
from enhancer.utils.utils import merge_dict
|
||||
from mayavoz.models.complexnn.utils import complex_cat
|
||||
from mayavoz.utils.transforms import ConviSTFT, ConvSTFT
|
||||
from mayavoz.utils.utils import merge_dict
|
||||
|
||||
|
||||
class DCCRN_ENCODER(nn.Module):
|
||||
|
|
@ -5,10 +5,10 @@ from typing import List, Optional, Union
|
|||
import torch.nn.functional as F
|
||||
from torch import nn
|
||||
|
||||
from enhancer.data.dataset import EnhancerDataset
|
||||
from enhancer.models.model import Model
|
||||
from enhancer.utils.io import Audio as audio
|
||||
from enhancer.utils.utils import merge_dict
|
||||
from mayavoz.data.dataset import EnhancerDataset
|
||||
from mayavoz.models.model import Model
|
||||
from mayavoz.utils.io import Audio as audio
|
||||
from mayavoz.utils.utils import merge_dict
|
||||
|
||||
|
||||
class DemucsLSTM(nn.Module):
|
||||
|
|
@ -13,14 +13,14 @@ from pytorch_lightning.utilities.cloud_io import load as pl_load
|
|||
from torch import nn
|
||||
from torch.optim import Adam
|
||||
|
||||
from enhancer.data.dataset import EnhancerDataset
|
||||
from enhancer.inference import Inference
|
||||
from enhancer.loss import LOSS_MAP, LossWrapper
|
||||
from enhancer.version import __version__
|
||||
from mayavoz.data.dataset import EnhancerDataset
|
||||
from mayavoz.inference import Inference
|
||||
from mayavoz.loss import LOSS_MAP, LossWrapper
|
||||
from mayavoz.version import __version__
|
||||
|
||||
CACHE_DIR = os.getenv(
|
||||
"ENHANCER_CACHE",
|
||||
os.path.expanduser("~/.cache/torch/enhancer"),
|
||||
os.path.expanduser("~/.cache/torch/mayavoz"),
|
||||
)
|
||||
HF_TORCH_WEIGHTS = "pytorch_model.ckpt"
|
||||
DEFAULT_DEVICE = "cpu"
|
||||
|
|
@ -37,7 +37,7 @@ class Model(pl.LightningModule):
|
|||
lr: float, optional
|
||||
learning rate for model training
|
||||
dataset: EnhancerDataset, optional
|
||||
Enhancer dataset used for training/validation
|
||||
mayavoz dataset used for training/validation
|
||||
duration: float, optional
|
||||
duration used for training/inference
|
||||
loss : string or List of strings or custom loss (nn.Module), default to "mse"
|
||||
|
|
@ -56,9 +56,7 @@ class Model(pl.LightningModule):
|
|||
metric: Union[str, List, Any] = "mse",
|
||||
):
|
||||
super().__init__()
|
||||
assert (
|
||||
num_channels == 1
|
||||
), "Enhancer only support for mono channel models"
|
||||
assert num_channels == 1, "mayavoz only support for mono channel models"
|
||||
self.dataset = dataset
|
||||
self.save_hyperparameters(
|
||||
"num_channels", "sampling_rate", "lr", "loss", "metric", "duration"
|
||||
|
|
@ -235,8 +233,8 @@ class Model(pl.LightningModule):
|
|||
|
||||
def on_save_checkpoint(self, checkpoint):
|
||||
|
||||
checkpoint["enhancer"] = {
|
||||
"version": {"enhancer": __version__, "pytorch": torch.__version__},
|
||||
checkpoint["mayavoz"] = {
|
||||
"version": {"mayavoz": __version__, "pytorch": torch.__version__},
|
||||
"architecture": {
|
||||
"module": self.__class__.__module__,
|
||||
"class": self.__class__.__name__,
|
||||
|
|
@ -319,7 +317,7 @@ class Model(pl.LightningModule):
|
|||
)
|
||||
model_path_pl = cached_download(
|
||||
url=url,
|
||||
library_name="enhancer",
|
||||
library_name="mayavoz",
|
||||
library_version=__version__,
|
||||
cache_dir=cached_dir,
|
||||
use_auth_token=use_auth_token,
|
||||
|
|
@ -329,8 +327,8 @@ class Model(pl.LightningModule):
|
|||
map_location = torch.device(DEFAULT_DEVICE)
|
||||
|
||||
loaded_checkpoint = pl_load(model_path_pl, map_location)
|
||||
module_name = loaded_checkpoint["enhancer"]["architecture"]["module"]
|
||||
class_name = loaded_checkpoint["enhancer"]["architecture"]["class"]
|
||||
module_name = loaded_checkpoint["mayavoz"]["architecture"]["module"]
|
||||
class_name = loaded_checkpoint["mayavoz"]["architecture"]["class"]
|
||||
module = import_module(module_name)
|
||||
Klass = getattr(module, class_name)
|
||||
|
||||
|
|
@ -5,8 +5,8 @@ import torch
|
|||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
from enhancer.data.dataset import EnhancerDataset
|
||||
from enhancer.models.model import Model
|
||||
from mayavoz.data.dataset import EnhancerDataset
|
||||
from mayavoz.models.model import Model
|
||||
|
||||
|
||||
class WavenetDecoder(nn.Module):
|
||||
|
|
@ -0,0 +1,3 @@
|
|||
from mayavoz.utils.config import Files
|
||||
from mayavoz.utils.io import Audio
|
||||
from mayavoz.utils.utils import check_files
|
||||
|
|
@ -1,7 +1,7 @@
|
|||
import os
|
||||
from typing import Optional
|
||||
|
||||
from enhancer.utils.config import Files
|
||||
from mayavoz.utils.config import Files
|
||||
|
||||
|
||||
def check_files(root_dir: str, files: Files):
|
||||
|
|
@ -316,9 +316,9 @@
|
|||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "enhancer",
|
||||
"display_name": "mayavoz",
|
||||
"language": "python",
|
||||
"name": "enhancer"
|
||||
"name": "mayavoz"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
|
|
|
|||
|
|
@ -374,7 +374,7 @@
|
|||
"```\n",
|
||||
"\n",
|
||||
"```yaml\n",
|
||||
"_target_: enhancer.models.demucs.Demucs\n",
|
||||
"_target_: mayavoz.models.demucs.Demucs\n",
|
||||
"num_channels: 1\n",
|
||||
"resample: 4\n",
|
||||
"sampling_rate : 16000\n",
|
||||
|
|
@ -405,9 +405,9 @@
|
|||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "enhancer",
|
||||
"display_name": "mayavoz",
|
||||
"language": "python",
|
||||
"name": "enhancer"
|
||||
"name": "mayavoz"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
|
|
|
|||
|
|
@ -0,0 +1,120 @@
|
|||
import os
|
||||
from types import MethodType
|
||||
|
||||
import hydra
|
||||
from hydra.utils import instantiate
|
||||
from omegaconf import DictConfig, OmegaConf
|
||||
from pytorch_lightning.callbacks import (
|
||||
EarlyStopping,
|
||||
LearningRateMonitor,
|
||||
ModelCheckpoint,
|
||||
)
|
||||
from pytorch_lightning.loggers import MLFlowLogger
|
||||
from torch.optim.lr_scheduler import ReduceLROnPlateau
|
||||
|
||||
# from torch_audiomentations import Compose, Shift
|
||||
|
||||
os.environ["HYDRA_FULL_ERROR"] = "1"
|
||||
JOB_ID = os.environ.get("SLURM_JOBID", "0")
|
||||
|
||||
|
||||
@hydra.main(config_path="train_config", config_name="config")
|
||||
def main(config: DictConfig):
|
||||
|
||||
OmegaConf.save(config, "config_log.yaml")
|
||||
|
||||
callbacks = []
|
||||
logger = MLFlowLogger(
|
||||
experiment_name=config.mlflow.experiment_name,
|
||||
run_name=config.mlflow.run_name,
|
||||
tags={"JOB_ID": JOB_ID},
|
||||
)
|
||||
|
||||
parameters = config.hyperparameters
|
||||
# apply_augmentations = Compose(
|
||||
# [
|
||||
# Shift(min_shift=0.5, max_shift=1.0, shift_unit="seconds", p=0.5),
|
||||
# ]
|
||||
# )
|
||||
|
||||
dataset = instantiate(config.dataset, augmentations=None)
|
||||
model = instantiate(
|
||||
config.model,
|
||||
dataset=dataset,
|
||||
lr=parameters.get("lr"),
|
||||
loss=parameters.get("loss"),
|
||||
metric=parameters.get("metric"),
|
||||
)
|
||||
|
||||
direction = model.valid_monitor
|
||||
checkpoint = ModelCheckpoint(
|
||||
dirpath="./model",
|
||||
filename=f"model_{JOB_ID}",
|
||||
monitor="valid_loss",
|
||||
verbose=False,
|
||||
mode=direction,
|
||||
every_n_epochs=1,
|
||||
)
|
||||
callbacks.append(checkpoint)
|
||||
callbacks.append(LearningRateMonitor(logging_interval="epoch"))
|
||||
|
||||
if parameters.get("Early_stop", False):
|
||||
early_stopping = EarlyStopping(
|
||||
monitor="val_loss",
|
||||
mode=direction,
|
||||
min_delta=0.0,
|
||||
patience=parameters.get("EarlyStopping_patience", 10),
|
||||
strict=True,
|
||||
verbose=False,
|
||||
)
|
||||
callbacks.append(early_stopping)
|
||||
|
||||
def configure_optimizers(self):
|
||||
optimizer = instantiate(
|
||||
config.optimizer,
|
||||
lr=parameters.get("lr"),
|
||||
params=self.parameters(),
|
||||
)
|
||||
scheduler = ReduceLROnPlateau(
|
||||
optimizer=optimizer,
|
||||
mode=direction,
|
||||
factor=parameters.get("ReduceLr_factor", 0.1),
|
||||
verbose=True,
|
||||
min_lr=parameters.get("min_lr", 1e-6),
|
||||
patience=parameters.get("ReduceLr_patience", 3),
|
||||
)
|
||||
return {
|
||||
"optimizer": optimizer,
|
||||
"lr_scheduler": scheduler,
|
||||
"monitor": f'valid_{parameters.get("ReduceLr_monitor", "loss")}',
|
||||
}
|
||||
|
||||
model.configure_optimizers = MethodType(configure_optimizers, model)
|
||||
|
||||
trainer = instantiate(config.trainer, logger=logger, callbacks=callbacks)
|
||||
trainer.fit(model)
|
||||
trainer.test(model)
|
||||
|
||||
logger.experiment.log_artifact(
|
||||
logger.run_id, f"{trainer.default_root_dir}/config_log.yaml"
|
||||
)
|
||||
|
||||
saved_location = os.path.join(
|
||||
trainer.default_root_dir, "model", f"model_{JOB_ID}.ckpt"
|
||||
)
|
||||
if os.path.isfile(saved_location):
|
||||
logger.experiment.log_artifact(logger.run_id, saved_location)
|
||||
logger.experiment.log_param(
|
||||
logger.run_id,
|
||||
"num_train_steps_per_epoch",
|
||||
dataset.train__len__() / dataset.batch_size,
|
||||
)
|
||||
logger.experiment.log_param(
|
||||
logger.run_id,
|
||||
"num_valid_steps_per_epoch",
|
||||
dataset.val__len__() / dataset.batch_size,
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
|
@ -0,0 +1,7 @@
|
|||
defaults:
|
||||
- model : Demucs
|
||||
- dataset : Vctk
|
||||
- optimizer : Adam
|
||||
- hyperparameters : default
|
||||
- trainer : default
|
||||
- mlflow : experiment
|
||||
|
|
@ -0,0 +1,12 @@
|
|||
_target_: mayavoz.data.dataset.EnhancerDataset
|
||||
root_dir : /Users/shahules/Myprojects/MS-SNSD
|
||||
name : dns-2020
|
||||
duration : 2.0
|
||||
sampling_rate: 16000
|
||||
batch_size: 32
|
||||
valid_size: 0.05
|
||||
files:
|
||||
train_clean : CleanSpeech_training
|
||||
test_clean : CleanSpeech_training
|
||||
train_noisy : NoisySpeech_training
|
||||
test_noisy : NoisySpeech_training
|
||||
|
|
@ -0,0 +1,13 @@
|
|||
_target_: mayavoz.data.dataset.EnhancerDataset
|
||||
name : vctk
|
||||
root_dir : /scratch/c.sistc3/DS_10283_2791
|
||||
duration : 4.5
|
||||
stride : 2
|
||||
sampling_rate: 16000
|
||||
batch_size: 32
|
||||
valid_minutes : 15
|
||||
files:
|
||||
train_clean : clean_trainset_28spk_wav
|
||||
test_clean : clean_testset_wav
|
||||
train_noisy : noisy_trainset_28spk_wav
|
||||
test_noisy : noisy_testset_wav
|
||||
|
|
@ -0,0 +1,7 @@
|
|||
loss : mae
|
||||
metric : [stoi,pesq,si-sdr]
|
||||
lr : 0.0003
|
||||
ReduceLr_patience : 5
|
||||
ReduceLr_factor : 0.2
|
||||
min_lr : 0.000001
|
||||
EarlyStopping_factor : 10
|
||||
|
|
@ -0,0 +1,2 @@
|
|||
experiment_name : shahules/mayavoz
|
||||
run_name : Demucs + Vtck with stride + augmentations
|
||||
|
|
@ -0,0 +1,25 @@
|
|||
_target_: mayavoz.models.dccrn.DCCRN
|
||||
num_channels: 1
|
||||
sampling_rate : 16000
|
||||
complex_lstm : True
|
||||
complex_norm : True
|
||||
complex_relu : True
|
||||
masking_mode : True
|
||||
|
||||
encoder_decoder:
|
||||
initial_output_channels : 32
|
||||
depth : 6
|
||||
kernel_size : 5
|
||||
growth_factor : 2
|
||||
stride : 2
|
||||
padding : 2
|
||||
output_padding : 1
|
||||
|
||||
lstm:
|
||||
num_layers : 2
|
||||
hidden_size : 256
|
||||
|
||||
stft:
|
||||
window_len : 400
|
||||
hop_size : 100
|
||||
nfft : 512
|
||||
|
|
@ -0,0 +1,16 @@
|
|||
_target_: mayavoz.models.demucs.Demucs
|
||||
num_channels: 1
|
||||
resample: 4
|
||||
sampling_rate : 16000
|
||||
|
||||
encoder_decoder:
|
||||
depth: 4
|
||||
initial_output_channels: 64
|
||||
kernel_size: 8
|
||||
stride: 4
|
||||
growth_factor: 2
|
||||
glu: True
|
||||
|
||||
lstm:
|
||||
bidirectional: False
|
||||
num_layers: 2
|
||||
|
|
@ -0,0 +1,5 @@
|
|||
_target_: mayavoz.models.waveunet.WaveUnet
|
||||
num_channels : 1
|
||||
depth : 9
|
||||
initial_output_channels: 24
|
||||
sampling_rate : 16000
|
||||
|
|
@ -0,0 +1,6 @@
|
|||
_target_: torch.optim.Adam
|
||||
lr: 1e-3
|
||||
betas: [0.9, 0.999]
|
||||
eps: 1e-08
|
||||
weight_decay: 0
|
||||
amsgrad: False
|
||||
|
|
@ -0,0 +1,46 @@
|
|||
_target_: pytorch_lightning.Trainer
|
||||
accelerator: gpu
|
||||
accumulate_grad_batches: 1
|
||||
amp_backend: native
|
||||
auto_lr_find: True
|
||||
auto_scale_batch_size: False
|
||||
auto_select_gpus: True
|
||||
benchmark: False
|
||||
check_val_every_n_epoch: 1
|
||||
detect_anomaly: False
|
||||
deterministic: False
|
||||
devices: 2
|
||||
enable_checkpointing: True
|
||||
enable_model_summary: True
|
||||
enable_progress_bar: True
|
||||
fast_dev_run: False
|
||||
gpus: null
|
||||
gradient_clip_val: 0
|
||||
gradient_clip_algorithm: norm
|
||||
ipus: null
|
||||
limit_predict_batches: 1.0
|
||||
limit_test_batches: 1.0
|
||||
limit_train_batches: 1.0
|
||||
limit_val_batches: 1.0
|
||||
log_every_n_steps: 50
|
||||
max_epochs: 200
|
||||
max_steps: -1
|
||||
max_time: null
|
||||
min_epochs: 1
|
||||
min_steps: null
|
||||
move_metrics_to_cpu: False
|
||||
multiple_trainloader_mode: max_size_cycle
|
||||
num_nodes: 1
|
||||
num_processes: 1
|
||||
num_sanity_val_steps: 2
|
||||
overfit_batches: 0.0
|
||||
precision: 32
|
||||
profiler: null
|
||||
reload_dataloaders_every_n_epochs: 0
|
||||
replace_sampler_ddp: True
|
||||
strategy: ddp
|
||||
sync_batchnorm: False
|
||||
tpu_cores: null
|
||||
track_grad_norm: -1
|
||||
val_check_interval: 1.0
|
||||
weights_save_path: null
|
||||
|
|
@ -0,0 +1,2 @@
|
|||
_target_: pytorch_lightning.Trainer
|
||||
fast_dev_run: True
|
||||
|
|
@ -1,4 +1,4 @@
|
|||
_target_: enhancer.data.dataset.EnhancerDataset
|
||||
_target_: mayavoz.data.dataset.EnhancerDataset
|
||||
name : vctk
|
||||
root_dir : /scratch/c.sistc3/DS_10283_2791
|
||||
duration : 4.5
|
||||
|
|
|
|||
|
|
@ -1,2 +1,2 @@
|
|||
experiment_name : shahules/enhancer
|
||||
experiment_name : shahules/mayavoz
|
||||
run_name : baseline
|
||||
|
|
|
|||
|
|
@ -1,4 +1,4 @@
|
|||
_target_: enhancer.models.demucs.Demucs
|
||||
_target_: mayavoz.models.demucs.Demucs
|
||||
num_channels: 1
|
||||
resample: 4
|
||||
sampling_rate : 16000
|
||||
|
|
|
|||
|
|
@ -1,4 +1,4 @@
|
|||
_target_: enhancer.data.dataset.EnhancerDataset
|
||||
_target_: mayavoz.data.dataset.EnhancerDataset
|
||||
name : vctk
|
||||
root_dir : /scratch/c.sistc3/DS_10283_2791
|
||||
duration : 2
|
||||
|
|
|
|||
|
|
@ -1,2 +1,2 @@
|
|||
experiment_name : shahules/enhancer
|
||||
experiment_name : shahules/mayavoz
|
||||
run_name : baseline
|
||||
|
|
|
|||
|
|
@ -1,4 +1,4 @@
|
|||
_target_: enhancer.models.waveunet.WaveUnet
|
||||
_target_: mayavoz.models.waveunet.WaveUnet
|
||||
num_channels : 1
|
||||
depth : 9
|
||||
initial_output_channels: 24
|
||||
|
|
|
|||
|
|
@ -1,4 +1,4 @@
|
|||
_target_: enhancer.data.dataset.EnhancerDataset
|
||||
_target_: mayavoz.data.dataset.EnhancerDataset
|
||||
root_dir : /Users/shahules/Myprojects/MS-SNSD
|
||||
name : dns-2020
|
||||
duration : 2.0
|
||||
|
|
|
|||
|
|
@ -1,4 +1,4 @@
|
|||
_target_: enhancer.data.dataset.EnhancerDataset
|
||||
_target_: mayavoz.data.dataset.EnhancerDataset
|
||||
name : vctk
|
||||
root_dir : /scratch/c.sistc3/DS_10283_2791
|
||||
duration : 4.5
|
||||
|
|
|
|||
|
|
@ -1,2 +1,2 @@
|
|||
experiment_name : shahules/enhancer
|
||||
experiment_name : shahules/mayavoz
|
||||
run_name : Demucs + Vtck with stride + augmentations
|
||||
|
|
|
|||
|
|
@ -1,4 +1,4 @@
|
|||
_target_: enhancer.models.dccrn.DCCRN
|
||||
_target_: mayavoz.models.dccrn.DCCRN
|
||||
num_channels: 1
|
||||
sampling_rate : 16000
|
||||
complex_lstm : True
|
||||
|
|
|
|||
|
|
@ -1,4 +1,4 @@
|
|||
_target_: enhancer.models.demucs.Demucs
|
||||
_target_: mayavoz.models.demucs.Demucs
|
||||
num_channels: 1
|
||||
resample: 4
|
||||
sampling_rate : 16000
|
||||
|
|
|
|||
|
|
@ -1,4 +1,4 @@
|
|||
_target_: enhancer.models.waveunet.WaveUnet
|
||||
_target_: mayavoz.models.waveunet.WaveUnet
|
||||
num_channels : 1
|
||||
depth : 9
|
||||
initial_output_channels: 24
|
||||
|
|
|
|||
|
|
@ -3,7 +3,7 @@
|
|||
# http://setuptools.readthedocs.io/en/latest/setuptools.html#configuring-setup-using-setup-cfg-files
|
||||
|
||||
[metadata]
|
||||
name = enhancer
|
||||
name = mayavoz
|
||||
description = Deep learning for speech enhacement
|
||||
author = Shahul Ess
|
||||
author-email = shahules786@gmail.com
|
||||
|
|
@ -53,7 +53,7 @@ cli =
|
|||
[options.entry_points]
|
||||
|
||||
console_scripts =
|
||||
enhancer-train=enhancer.cli.train:train
|
||||
mayavoz-train=.cli.train:train
|
||||
|
||||
[test]
|
||||
# py.test options when running `python setup.py test`
|
||||
|
|
@ -66,7 +66,7 @@ extras = True
|
|||
# e.g. --cov-report html (or xml) for html/xml output or --junitxml junit.xml
|
||||
# in order to write a coverage file that can be read by Jenkins.
|
||||
addopts =
|
||||
--cov enhancer --cov-report term-missing
|
||||
--cov mayavoz --cov-report term-missing
|
||||
--verbose
|
||||
norecursedirs =
|
||||
dist
|
||||
|
|
|
|||
6
setup.py
6
setup.py
|
|
@ -33,15 +33,15 @@ elif sha != "Unknown":
|
|||
version += "+" + sha[:7]
|
||||
print("-- Building version " + version)
|
||||
|
||||
version_path = ROOT_DIR / "enhancer" / "version.py"
|
||||
version_path = ROOT_DIR / "mayavoz" / "version.py"
|
||||
|
||||
with open(version_path, "w") as f:
|
||||
f.write("__version__ = '{}'\n".format(version))
|
||||
|
||||
if __name__ == "__main__":
|
||||
setup(
|
||||
name="enhancer",
|
||||
namespace_packages=["enhancer"],
|
||||
name="mayavoz",
|
||||
namespace_packages=["mayavoz"],
|
||||
version=version,
|
||||
packages=find_packages(),
|
||||
install_requires=requirements,
|
||||
|
|
|
|||
|
|
@ -1,7 +1,7 @@
|
|||
import pytest
|
||||
import torch
|
||||
|
||||
from enhancer.loss import mean_absolute_error, mean_squared_error
|
||||
from mayavoz.loss import mean_absolute_error, mean_squared_error
|
||||
|
||||
loss_functions = [mean_absolute_error(), mean_squared_error()]
|
||||
|
||||
|
|
|
|||
|
|
@ -1,8 +1,8 @@
|
|||
import torch
|
||||
|
||||
from enhancer.models.complexnn.conv import ComplexConv2d, ComplexConvTranspose2d
|
||||
from enhancer.models.complexnn.rnn import ComplexLSTM
|
||||
from enhancer.models.complexnn.utils import ComplexBatchNorm2D
|
||||
from mayavoz.models.complexnn.conv import ComplexConv2d, ComplexConvTranspose2d
|
||||
from mayavoz.models.complexnn.rnn import ComplexLSTM
|
||||
from mayavoz.models.complexnn.utils import ComplexBatchNorm2D
|
||||
|
||||
|
||||
def test_complexconv2d():
|
||||
|
|
|
|||
|
|
@ -1,9 +1,9 @@
|
|||
import pytest
|
||||
import torch
|
||||
|
||||
from enhancer.data.dataset import EnhancerDataset
|
||||
from enhancer.models import Demucs
|
||||
from enhancer.utils.config import Files
|
||||
from mayavoz.data.dataset import EnhancerDataset
|
||||
from mayavoz.models import Demucs
|
||||
from mayavoz.utils.config import Files
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
|
|
|
|||
|
|
@ -1,9 +1,9 @@
|
|||
import pytest
|
||||
import torch
|
||||
|
||||
from enhancer.data.dataset import EnhancerDataset
|
||||
from enhancer.models.dccrn import DCCRN
|
||||
from enhancer.utils.config import Files
|
||||
from mayavoz.data.dataset import EnhancerDataset
|
||||
from mayavoz.models.dccrn import DCCRN
|
||||
from mayavoz.utils.config import Files
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
|
|
|
|||
|
|
@ -1,9 +1,9 @@
|
|||
import pytest
|
||||
import torch
|
||||
|
||||
from enhancer.data.dataset import EnhancerDataset
|
||||
from enhancer.models import WaveUnet
|
||||
from enhancer.utils.config import Files
|
||||
from mayavoz.data.dataset import EnhancerDataset
|
||||
from mayavoz.models import WaveUnet
|
||||
from mayavoz.utils.config import Files
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
|
|
|
|||
|
|
@ -1,7 +1,7 @@
|
|||
import pytest
|
||||
import torch
|
||||
|
||||
from enhancer.inference import Inference
|
||||
from mayavoz.inference import Inference
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
import torch
|
||||
|
||||
from enhancer.utils.transforms import ConviSTFT, ConvSTFT
|
||||
from mayavoz.utils.transforms import ConviSTFT, ConvSTFT
|
||||
|
||||
|
||||
def test_stft_istft():
|
||||
|
|
|
|||
|
|
@ -2,8 +2,8 @@ import numpy as np
|
|||
import pytest
|
||||
import torch
|
||||
|
||||
from enhancer.data.fileprocessor import Fileprocessor
|
||||
from enhancer.utils.io import Audio
|
||||
from mayavoz.data.fileprocessor import Fileprocessor
|
||||
from mayavoz.utils.io import Audio
|
||||
|
||||
|
||||
def test_io_channel():
|
||||
|
|
|
|||
Loading…
Reference in New Issue