format loss.py
This commit is contained in:
parent
e8b5e343c7
commit
756465c2bf
110
enhancer/loss.py
110
enhancer/loss.py
|
|
@ -3,62 +3,82 @@ import torch.nn as nn
|
||||||
|
|
||||||
|
|
||||||
class mean_squared_error(nn.Module):
|
class mean_squared_error(nn.Module):
|
||||||
|
"""
|
||||||
|
Mean squared error / L1 loss
|
||||||
|
"""
|
||||||
|
|
||||||
def __init__(self,reduction="mean"):
|
def __init__(self, reduction="mean"):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
|
|
||||||
self.loss_fun = nn.MSELoss(reduction=reduction)
|
self.loss_fun = nn.MSELoss(reduction=reduction)
|
||||||
self.higher_better = False
|
self.higher_better = False
|
||||||
|
|
||||||
def forward(self,prediction:torch.Tensor, target: torch.Tensor):
|
def forward(self, prediction: torch.Tensor, target: torch.Tensor):
|
||||||
|
|
||||||
if prediction.size() != target.size() or target.ndim < 3:
|
if prediction.size() != target.size() or target.ndim < 3:
|
||||||
raise TypeError(f"""Inputs must be of the same shape (batch_size,channels,samples)
|
raise TypeError(
|
||||||
got {prediction.size()} and {target.size()} instead""")
|
f"""Inputs must be of the same shape (batch_size,channels,samples)
|
||||||
|
got {prediction.size()} and {target.size()} instead"""
|
||||||
|
)
|
||||||
|
|
||||||
return self.loss_fun(prediction, target)
|
return self.loss_fun(prediction, target)
|
||||||
|
|
||||||
class mean_absolute_error(nn.Module):
|
|
||||||
|
|
||||||
def __init__(self,reduction="mean"):
|
class mean_absolute_error(nn.Module):
|
||||||
|
"""
|
||||||
|
Mean absolute error / L2 loss
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, reduction="mean"):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
|
|
||||||
self.loss_fun = nn.L1Loss(reduction=reduction)
|
self.loss_fun = nn.L1Loss(reduction=reduction)
|
||||||
self.higher_better = False
|
self.higher_better = False
|
||||||
|
|
||||||
def forward(self, prediction:torch.Tensor, target: torch.Tensor):
|
def forward(self, prediction: torch.Tensor, target: torch.Tensor):
|
||||||
|
|
||||||
if prediction.size() != target.size() or target.ndim < 3:
|
if prediction.size() != target.size() or target.ndim < 3:
|
||||||
raise TypeError(f"""Inputs must be of the same shape (batch_size,channels,samples)
|
raise TypeError(
|
||||||
got {prediction.size()} and {target.size()} instead""")
|
f"""Inputs must be of the same shape (batch_size,channels,samples)
|
||||||
|
got {prediction.size()} and {target.size()} instead"""
|
||||||
|
)
|
||||||
|
|
||||||
return self.loss_fun(prediction, target)
|
return self.loss_fun(prediction, target)
|
||||||
|
|
||||||
class Si_SDR(nn.Module):
|
|
||||||
|
|
||||||
def __init__(
|
class Si_SDR(nn.Module):
|
||||||
self,
|
"""
|
||||||
reduction:str="mean"
|
SI-SDR metric based on SDR – HALF-BAKED OR WELL DONE?(https://arxiv.org/pdf/1811.02508.pdf)
|
||||||
):
|
"""
|
||||||
|
|
||||||
|
def __init__(self, reduction: str = "mean"):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
if reduction in ["sum","mean",None]:
|
if reduction in ["sum", "mean", None]:
|
||||||
self.reduction = reduction
|
self.reduction = reduction
|
||||||
else:
|
else:
|
||||||
raise TypeError("Invalid reduction, valid options are sum, mean, None")
|
raise TypeError(
|
||||||
|
"Invalid reduction, valid options are sum, mean, None"
|
||||||
|
)
|
||||||
self.higher_better = False
|
self.higher_better = False
|
||||||
|
|
||||||
def forward(self,prediction:torch.Tensor, target:torch.Tensor):
|
def forward(self, prediction: torch.Tensor, target: torch.Tensor):
|
||||||
|
|
||||||
if prediction.size() != target.size() or target.ndim < 3:
|
if prediction.size() != target.size() or target.ndim < 3:
|
||||||
raise TypeError(f"""Inputs must be of the same shape (batch_size,channels,samples)
|
raise TypeError(
|
||||||
got {prediction.size()} and {target.size()} instead""")
|
f"""Inputs must be of the same shape (batch_size,channels,samples)
|
||||||
|
got {prediction.size()} and {target.size()} instead"""
|
||||||
target_energy = torch.sum(target**2,keepdim=True,dim=-1)
|
)
|
||||||
scaling_factor = torch.sum(prediction*target,keepdim=True,dim=-1) / target_energy
|
|
||||||
|
target_energy = torch.sum(target**2, keepdim=True, dim=-1)
|
||||||
|
scaling_factor = (
|
||||||
|
torch.sum(prediction * target, keepdim=True, dim=-1) / target_energy
|
||||||
|
)
|
||||||
target_projection = target * scaling_factor
|
target_projection = target * scaling_factor
|
||||||
noise = prediction - target_projection
|
noise = prediction - target_projection
|
||||||
ratio = torch.sum(target_projection**2,dim=-1) / torch.sum(noise**2,dim=-1)
|
ratio = torch.sum(target_projection**2, dim=-1) / torch.sum(
|
||||||
si_sdr = 10*torch.log10(ratio).mean(dim=-1)
|
noise**2, dim=-1
|
||||||
|
)
|
||||||
|
si_sdr = 10 * torch.log10(ratio).mean(dim=-1)
|
||||||
|
|
||||||
if self.reduction == "sum":
|
if self.reduction == "sum":
|
||||||
si_sdr = si_sdr.sum()
|
si_sdr = si_sdr.sum()
|
||||||
|
|
@ -66,46 +86,52 @@ class Si_SDR(nn.Module):
|
||||||
si_sdr = si_sdr.mean()
|
si_sdr = si_sdr.mean()
|
||||||
else:
|
else:
|
||||||
pass
|
pass
|
||||||
|
|
||||||
return si_sdr
|
return si_sdr
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
class Avergeloss(nn.Module):
|
class Avergeloss(nn.Module):
|
||||||
|
"""
|
||||||
|
Combine multiple metics of same nature.
|
||||||
|
for example, ["mea","mae"]
|
||||||
|
"""
|
||||||
|
|
||||||
def __init__(self,losses):
|
def __init__(self, losses):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
|
|
||||||
self.valid_losses = nn.ModuleList()
|
self.valid_losses = nn.ModuleList()
|
||||||
|
|
||||||
direction = [getattr(LOSS_MAP[loss](),"higher_better") for loss in losses]
|
direction = [
|
||||||
|
getattr(LOSS_MAP[loss](), "higher_better") for loss in losses
|
||||||
|
]
|
||||||
if len(set(direction)) > 1:
|
if len(set(direction)) > 1:
|
||||||
raise ValueError("all cost functions should be of same nature, maximize or minimize!")
|
raise ValueError(
|
||||||
|
"all cost functions should be of same nature, maximize or minimize!"
|
||||||
|
)
|
||||||
|
|
||||||
self.higher_better = direction[0]
|
self.higher_better = direction[0]
|
||||||
for loss in losses:
|
for loss in losses:
|
||||||
loss = self.validate_loss(loss)
|
loss = self.validate_loss(loss)
|
||||||
self.valid_losses.append(loss())
|
self.valid_losses.append(loss())
|
||||||
|
|
||||||
|
def validate_loss(self, loss: str):
|
||||||
def validate_loss(self,loss:str):
|
|
||||||
if loss not in LOSS_MAP.keys():
|
if loss not in LOSS_MAP.keys():
|
||||||
raise ValueError(f"Invalid loss function {loss}, available loss functions are {tuple([loss for loss in LOSS_MAP.keys()])}")
|
raise ValueError(
|
||||||
|
f"Invalid loss function {loss}, available loss functions are {tuple([loss for loss in LOSS_MAP.keys()])}"
|
||||||
|
)
|
||||||
else:
|
else:
|
||||||
return LOSS_MAP[loss]
|
return LOSS_MAP[loss]
|
||||||
|
|
||||||
def forward(self,prediction:torch.Tensor, target:torch.Tensor):
|
def forward(self, prediction: torch.Tensor, target: torch.Tensor):
|
||||||
loss = 0.0
|
loss = 0.0
|
||||||
for loss_fun in self.valid_losses:
|
for loss_fun in self.valid_losses:
|
||||||
loss += loss_fun(prediction, target)
|
loss += loss_fun(prediction, target)
|
||||||
|
|
||||||
return loss
|
return loss
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
LOSS_MAP = {"mae":mean_absolute_error,
|
|
||||||
"mse": mean_squared_error,
|
|
||||||
"SI-SDR":Si_SDR}
|
|
||||||
|
|
||||||
|
|
||||||
|
LOSS_MAP = {
|
||||||
|
"mae": mean_absolute_error,
|
||||||
|
"mse": mean_squared_error,
|
||||||
|
"SI-SDR": Si_SDR,
|
||||||
|
}
|
||||||
|
|
|
||||||
Loading…
Reference in New Issue