Merge pull request #15 from shahules786/dev-reformat

precommit hooks
This commit is contained in:
Shahul ES 2022-10-05 20:51:45 +05:30 committed by GitHub
commit 6b856cfc4a
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
31 changed files with 120 additions and 80 deletions

43
.pre-commit-config.yaml Normal file
View File

@ -0,0 +1,43 @@
repos:
# # Clean Notebooks
# - repo: https://github.com/kynan/nbstripout
# rev: master
# hooks:
# - id: nbstripout
# Format Code
- repo: https://github.com/ambv/black
rev: 22.8.0
hooks:
- id: black
# Sort imports
- repo: https://github.com/PyCQA/isort
rev: 5.10.1
hooks:
- id: isort
args: ["--profile", "black"]
- repo: https://gitlab.com/pycqa/flake8
rev: 5.0.4
hooks:
- id: flake8
args: ['--ignore=E203,E501,F811,E712,W503']
# Formatting, Whitespace, etc
- repo: https://github.com/pre-commit/pre-commit-hooks
rev: v3.2.0
hooks:
- id: trailing-whitespace
- id: check-added-large-files
args: ['--maxkb=1000']
- id: check-ast
- id: check-json
- id: check-merge-conflict
- id: check-xml
- id: check-yaml
- id: debug-statements
- id: end-of-file-fixer
- id: requirements-txt-fixer
- id: mixed-line-ending
args: ['--fix=no']

View File

@ -1,11 +1,12 @@
import os
from types import MethodType
import hydra
from hydra.utils import instantiate
from omegaconf import DictConfig
from torch.optim.lr_scheduler import ReduceLROnPlateau
from pytorch_lightning.callbacks import ModelCheckpoint, EarlyStopping
from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint
from pytorch_lightning.loggers import MLFlowLogger
from torch.optim.lr_scheduler import ReduceLROnPlateau
os.environ["HYDRA_FULL_ERROR"] = "1"
JOB_ID = os.environ.get("SLURM_JOBID", "0")

View File

@ -10,4 +10,3 @@ files:
test_clean : clean_test_wav
train_noisy : clean_test_wav
test_noisy : clean_test_wav

View File

@ -10,6 +10,3 @@ files:
test_clean : clean_testset_wav
train_noisy : noisy_trainset_28spk_wav
test_noisy : noisy_testset_wav

View File

@ -5,4 +5,3 @@ ReduceLr_patience : 5
ReduceLr_factor : 0.1
min_lr : 0.000001
EarlyStopping_factor : 10

View File

@ -14,5 +14,3 @@ encoder_decoder:
lstm:
bidirectional: False
num_layers: 2

View File

@ -1,16 +1,17 @@
import multiprocessing
import math
import multiprocessing
import os
import pytorch_lightning as pl
from torch.utils.data import IterableDataset, DataLoader, Dataset
import torch.nn.functional as F
from typing import Optional
import pytorch_lightning as pl
import torch.nn.functional as F
from torch.utils.data import DataLoader, Dataset, IterableDataset
from enhancer.data.fileprocessor import Fileprocessor
from enhancer.utils.random import create_unique_rng
from enhancer.utils.io import Audio
from enhancer.utils import check_files
from enhancer.utils.config import Files
from enhancer.utils.io import Audio
from enhancer.utils.random import create_unique_rng
class TrainDataset(IterableDataset):

View File

@ -1,5 +1,6 @@
import glob
import os
import numpy as np
from scipy.io import wavfile

View File

@ -1,11 +1,12 @@
import numpy as np
from scipy.signal import get_window
from scipy.io import wavfile
from pathlib import Path
from typing import Optional, Union
import numpy as np
import torch
import torch.nn.functional as F
from pathlib import Path
from librosa import load as load_audio
from scipy.io import wavfile
from scipy.signal import get_window
from enhancer.utils import Audio

View File

@ -1,3 +1,3 @@
from enhancer.models.demucs import Demucs
from enhancer.models.waveunet import WaveUnet
from enhancer.models.model import Model
from enhancer.models.waveunet import WaveUnet

View File

@ -1,11 +1,12 @@
import logging
from typing import Optional, Union, List
from torch import nn
import torch.nn.functional as F
import math
from typing import List, Optional, Union
import torch.nn.functional as F
from torch import nn
from enhancer.models.model import Model
from enhancer.data.dataset import EnhancerDataset
from enhancer.models.model import Model
from enhancer.utils.io import Audio as audio
from enhancer.utils.utils import merge_dict

View File

@ -1,20 +1,20 @@
from importlib import import_module
from huggingface_hub import cached_download, hf_hub_url
import numpy as np
import os
from typing import Optional, Union, List, Text, Dict, Any
from torch.optim import Adam
import torch
import pytorch_lightning as pl
from pytorch_lightning.utilities.cloud_io import load as pl_load
from urllib.parse import urlparse
from importlib import import_module
from pathlib import Path
from typing import Any, Dict, List, Optional, Text, Union
from urllib.parse import urlparse
import numpy as np
import pytorch_lightning as pl
import torch
from huggingface_hub import cached_download, hf_hub_url
from pytorch_lightning.utilities.cloud_io import load as pl_load
from torch.optim import Adam
from enhancer import __version__
from enhancer.data.dataset import EnhancerDataset
from enhancer.loss import Avergeloss
from enhancer.inference import Inference
from enhancer.loss import Avergeloss
CACHE_DIR = ""
HF_TORCH_WEIGHTS = ""
@ -293,7 +293,7 @@ class Model(pl.LightningModule):
with torch.no_grad():
for batch_id in range(0, batch.shape[0], batch_size):
batch_data = batch[batch_id: batch_id + batch_size, :, :].to(
batch_data = batch[batch_id : batch_id + batch_size, :, :].to(
self.device
)
prediction = self(batch_data)

View File

@ -1,11 +1,12 @@
import logging
from typing import List, Optional, Union
import torch
import torch.nn as nn
import torch.nn.functional as F
from typing import Optional, Union, List
from enhancer.models.model import Model
from enhancer.data.dataset import EnhancerDataset
from enhancer.models.model import Model
class WavenetDecoder(nn.Module):

View File

@ -1,3 +1,3 @@
from enhancer.utils.utils import check_files
from enhancer.utils.io import Audio
from enhancer.utils.config import Files
from enhancer.utils.io import Audio
from enhancer.utils.utils import check_files

View File

@ -1,7 +1,8 @@
import os
import librosa
from pathlib import Path
from typing import Optional, Union
import librosa
import numpy as np
import torch
import torchaudio

View File

@ -1,5 +1,6 @@
import os
import random
import torch

View File

@ -1,5 +1,6 @@
import os
from typing import Optional
from enhancer.utils.config import Files

View File

@ -1,16 +1,16 @@
joblib==1.2.0
librosa==0.9.2
numpy==1.23.3
hydra-core==1.2.0
scikit-learn==1.1.2
scipy==1.9.1
torch==1.12.1
tqdm==4.64.1
mlflow==1.29.0
protobuf==3.19.6
boto3==1.24.86
torchaudio==0.12.1
huggingface-hu==0.10.0
pytorch-lightning==1.7.7
flake8==5.0.4
black==22.8.0
black>=22.8.0
boto3>=1.24.86
flake8>=5.0.4
huggingface-hu>=0.10.0
hydra-core>=1.2.0
joblib>=1.2.0
librosa>=0.9.2
mlflow>=1.29.0
numpy>=1.23.3
protobuf>=3.19.6
pytorch-lightning>=1.7.7
scikit-learn>=1.1.2
scipy>=1.9.1
torch>=1.12.1
torchaudio>=0.12.1
tqdm>=4.64.1

View File

@ -1,6 +1,5 @@
from asyncio import base_tasks
import torch
import pytest
import torch
from enhancer.loss import mean_absolute_error, mean_squared_error

View File

@ -1,10 +1,9 @@
import pytest
import torch
from enhancer import data
from enhancer.utils.config import Files
from enhancer.models import Demucs
from enhancer.data.dataset import EnhancerDataset
from enhancer.models import Demucs
from enhancer.utils.config import Files
@pytest.fixture
@ -41,4 +40,4 @@ def test_forward(batch_size, samples):
)
def test_demucs_init(dataset, channels, loss):
with torch.no_grad():
model = Demucs(num_channels=channels, dataset=dataset, loss=loss)
_ = Demucs(num_channels=channels, dataset=dataset, loss=loss)

View File

@ -1,10 +1,9 @@
import pytest
import torch
from enhancer import data
from enhancer.utils.config import Files
from enhancer.models import WaveUnet
from enhancer.data.dataset import EnhancerDataset
from enhancer.models import WaveUnet
from enhancer.utils.config import Files
@pytest.fixture
@ -41,4 +40,4 @@ def test_forward(batch_size, samples):
)
def test_demucs_init(dataset, channels, loss):
with torch.no_grad():
model = WaveUnet(num_channels=channels, dataset=dataset, loss=loss)
_ = WaveUnet(num_channels=channels, dataset=dataset, loss=loss)

View File

@ -1,11 +1,9 @@
from logging import root
import numpy as np
import pytest
import torch
import numpy as np
from enhancer.utils.io import Audio
from enhancer.utils.config import Files
from enhancer.data.fileprocessor import Fileprocessor
from enhancer.utils.io import Audio
def test_io_channel():
@ -47,6 +45,6 @@ def test_fileprocessor_names(dataset_name):
def test_fileprocessor_invaliname():
with pytest.raises(ValueError):
fp = Fileprocessor.from_name(
_ = Fileprocessor.from_name(
"undefined", "clean_dir", "noisy_dir", 16000
).prepare_matching_dict()