vctk dataset

This commit is contained in:
shahules786 2022-08-22 13:25:43 +05:30
parent bcbc82dbad
commit 54a4364fb9
1 changed files with 46 additions and 11 deletions

View File

@ -1,15 +1,18 @@
from genericpath import isdir
import librosa
import glob
import math
import os
from scipy.io import wavfile
from torch.utils.data import IterableDataset
import torch
from enhancer.utils.random import create_unique_rng
from enhancer.utils.io import Audio
class Vctk(IterableDataset):
"""Dataset object for Voice Bank Corpus (VCTK) Dataset"""
def __init__(self,clean_path,noisy_path,sample_length=1,num_samples=None):
def __init__(self,clean_path,noisy_path,duration=1,sampling_rate=16000,num_samples=None):
if not os.path.isdir(clean_path):
raise ValueError(f"{clean_path} is not a valid directory")
@ -17,22 +20,54 @@ class Vctk(IterableDataset):
if not os.path.isdir(noisy_path):
raise ValueError(f"{clean_path} is not a valid directory")
self.sampling_rate = sampling_rate
self.clean_path = clean_path
self.noisy_path = noisy_path
self.wav_samples =[file.split('/')[-1] for file in glob.glob(os.path.join(clean_path,"*.wav"))]
if num_samples is None:
self.num_samples = len([file for file in os.listdir(clean_path) if file.endswith(".wav")])
self.num_samples = len(self.wav_samples)
else:
self.num_samples = num_samples
self.sample_length = max(0.1,sample_length)
self.duration = max(1.0,duration)
self.audio = Audio(self.sampling_rate,mono=True,return_tensor=True)
self.files_duration = self.get_files_duration()
def get_file_duration(self):
files_duration = {}
for file in self.clean_path:
wavfile = wavfile.read(os.path.join(self.clean_path,file),rate=self.sampling_rate)
files_duration.update({file:math.ceil(wavfile/self.sampling_rate)})
return files_duration
def __iter__(self):
rng = create_unique_rng(12) ##pass epoch number here
while True:
file_name = rng.choices(self.wav_samples,k=1)
file_duration = self.files_duration.get(file_name)
start_time = rng.randint(0,math.ceil(file_duration- self.duration))
data = self.prepare_segment(file_name,start_time)
yield data
pass
def prepare_segment(self,file_name:str, start_time:int):
clean_segment = self.audio(os.path.join(self.clean_path,file_name),
offset=start_time,duration=self.duration)
noisy_segment = self.audio(os.path.join(self.noisy_path,file_name),
offset=start_time,duration=self.duration)
return {"clean": clean_segment,"noisy":noisy_segment}
def __len__(self):
pass
return math.ceil(sum(self.files_duration.values())/self.duration)