refactor encoder-decoder

This commit is contained in:
shahules786 2022-09-21 10:36:56 +05:30
parent 8a90899663
commit 3f40b54fc6
1 changed files with 76 additions and 20 deletions

View File

@ -1,3 +1,5 @@
from base64 import encode
from turtle import forward
from typing import Optional, Union, List
from torch import nn
import torch.nn.functional as F
@ -8,7 +10,7 @@ from enhancer.data.dataset import EnhancerDataset
from enhancer.utils.io import Audio as audio
from enhancer.utils.utils import merge_dict
class DeLSTM(nn.Module):
class DemucsLSTM(nn.Module):
def __init__(
self,
input_size:int,
@ -29,6 +31,59 @@ class DeLSTM(nn.Module):
return output,(h,c)
class DemucsEncoder(nn.Module):
def __init__(
self,
num_channels:int,
hidden_size:int,
kernel_size:int,
stride:int=1,
glu:bool=False,
):
super().__init__()
activation = nn.GLU(1) if glu else nn.ReLU()
multi_factor = 2 if glu else 1
self.encoder = nn.Sequential(
nn.Conv1d(num_channels,hidden_size,kernel_size,stride),
nn.ReLU(),
nn.Conv1d(hidden_size, hidden_size*multi_factor,kernel_size,1),
activation
)
def forward(self,waveform):
return self.encoder(waveform)
class DemucsDecoder(nn.Module):
def __init__(
self,
num_channels:int,
hidden_size:int,
kernel_size:int,
stride:int=1,
glu:bool=False,
layer:int=0
):
super().__init__()
activation = nn.GLU(1) if glu else nn.ReLU()
multi_factor = 2 if glu else 1
self.decoder = nn.Sequential(
nn.Conv1d(hidden_size,hidden_size*multi_factor,kernel_size,1),
activation,
nn.ConvTranspose1d(hidden_size,num_channels,kernel_size,stride)
)
if layer>0:
self.decoder.add_module("4", nn.ReLU())
def forward(self,waveform,):
out = self.decoder(waveform)
return out
class Demucs(Model):
ED_DEFAULTS = {
@ -56,44 +111,45 @@ class Demucs(Model):
loss:Union[str, List] = "mse"
):
duration = dataset.duration if isinstance(dataset,EnhancerDataset) else None
super().__init__(num_channels=num_channels,
sampling_rate=sampling_rate,lr=lr,
dataset=dataset,loss=loss)
dataset=dataset,duration=duration,loss=loss)
encoder_decoder = merge_dict(self.ED_DEFAULTS,encoder_decoder)
lstm = merge_dict(self.LSTM_DEFAULTS,lstm)
self.save_hyperparameters("encoder_decoder","lstm","resample")
hidden = encoder_decoder["initial_output_channels"]
activation = nn.GLU(1) if encoder_decoder["glu"] else nn.ReLU()
multi_factor = 2 if encoder_decoder["glu"] else 1
self.encoder = nn.ModuleList()
self.decoder = nn.ModuleList()
for layer in range(encoder_decoder["depth"]):
encoder_layer = [nn.Conv1d(num_channels,hidden,encoder_decoder["kernel_size"],encoder_decoder["stride"]),
nn.ReLU(),
nn.Conv1d(hidden, hidden*multi_factor,encoder_decoder["kernel_size"],1),
activation]
encoder_layer = nn.Sequential(*encoder_layer)
encoder_layer = DemucsEncoder(num_channels=num_channels,
hidden_size=hidden,
kernel_size=encoder_decoder["kernel_size"],
stride=encoder_decoder["stride"],
glu=encoder_decoder["glu"],
)
self.encoder.append(encoder_layer)
decoder_layer = [nn.Conv1d(hidden,hidden*multi_factor,encoder_decoder["kernel_size"],1),
activation,
nn.ConvTranspose1d(hidden,num_channels,encoder_decoder["kernel_size"],encoder_decoder["stride"])
]
if layer>0:
decoder_layer.append(nn.ReLU())
decoder_layer = nn.Sequential(*decoder_layer)
decoder_layer = DemucsDecoder(num_channels=num_channels,
hidden_size=hidden,
kernel_size=encoder_decoder["kernel_size"],
stride=1,
glu=encoder_decoder["glu"],
layer=layer
)
self.decoder.insert(0,decoder_layer)
num_channels = hidden
hidden = self.ED_DEFAULTS["growth_factor"] * hidden
self.de_lstm = DeLSTM(input_size=num_channels,hidden_size=num_channels,num_layers=lstm["num_layers"],bidirectional=lstm["bidirectional"])
self.de_lstm = DemucsLSTM(input_size=num_channels,
hidden_size=num_channels,
num_layers=lstm["num_layers"],
bidirectional=lstm["bidirectional"]
)
def forward(self,mixed_signal):