refactor encoder-decoder
This commit is contained in:
parent
8a90899663
commit
3f40b54fc6
|
|
@ -1,3 +1,5 @@
|
|||
from base64 import encode
|
||||
from turtle import forward
|
||||
from typing import Optional, Union, List
|
||||
from torch import nn
|
||||
import torch.nn.functional as F
|
||||
|
|
@ -8,7 +10,7 @@ from enhancer.data.dataset import EnhancerDataset
|
|||
from enhancer.utils.io import Audio as audio
|
||||
from enhancer.utils.utils import merge_dict
|
||||
|
||||
class DeLSTM(nn.Module):
|
||||
class DemucsLSTM(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
input_size:int,
|
||||
|
|
@ -29,6 +31,59 @@ class DeLSTM(nn.Module):
|
|||
|
||||
return output,(h,c)
|
||||
|
||||
|
||||
class DemucsEncoder(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
num_channels:int,
|
||||
hidden_size:int,
|
||||
kernel_size:int,
|
||||
stride:int=1,
|
||||
glu:bool=False,
|
||||
):
|
||||
super().__init__()
|
||||
activation = nn.GLU(1) if glu else nn.ReLU()
|
||||
multi_factor = 2 if glu else 1
|
||||
self.encoder = nn.Sequential(
|
||||
nn.Conv1d(num_channels,hidden_size,kernel_size,stride),
|
||||
nn.ReLU(),
|
||||
nn.Conv1d(hidden_size, hidden_size*multi_factor,kernel_size,1),
|
||||
activation
|
||||
)
|
||||
|
||||
def forward(self,waveform):
|
||||
|
||||
return self.encoder(waveform)
|
||||
|
||||
class DemucsDecoder(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
num_channels:int,
|
||||
hidden_size:int,
|
||||
kernel_size:int,
|
||||
stride:int=1,
|
||||
glu:bool=False,
|
||||
layer:int=0
|
||||
):
|
||||
super().__init__()
|
||||
activation = nn.GLU(1) if glu else nn.ReLU()
|
||||
multi_factor = 2 if glu else 1
|
||||
self.decoder = nn.Sequential(
|
||||
nn.Conv1d(hidden_size,hidden_size*multi_factor,kernel_size,1),
|
||||
activation,
|
||||
nn.ConvTranspose1d(hidden_size,num_channels,kernel_size,stride)
|
||||
)
|
||||
if layer>0:
|
||||
self.decoder.add_module("4", nn.ReLU())
|
||||
|
||||
def forward(self,waveform,):
|
||||
|
||||
out = self.decoder(waveform)
|
||||
return out
|
||||
|
||||
|
||||
class Demucs(Model):
|
||||
|
||||
ED_DEFAULTS = {
|
||||
|
|
@ -56,44 +111,45 @@ class Demucs(Model):
|
|||
loss:Union[str, List] = "mse"
|
||||
|
||||
):
|
||||
duration = dataset.duration if isinstance(dataset,EnhancerDataset) else None
|
||||
super().__init__(num_channels=num_channels,
|
||||
sampling_rate=sampling_rate,lr=lr,
|
||||
dataset=dataset,loss=loss)
|
||||
dataset=dataset,duration=duration,loss=loss)
|
||||
|
||||
encoder_decoder = merge_dict(self.ED_DEFAULTS,encoder_decoder)
|
||||
lstm = merge_dict(self.LSTM_DEFAULTS,lstm)
|
||||
self.save_hyperparameters("encoder_decoder","lstm","resample")
|
||||
|
||||
hidden = encoder_decoder["initial_output_channels"]
|
||||
activation = nn.GLU(1) if encoder_decoder["glu"] else nn.ReLU()
|
||||
multi_factor = 2 if encoder_decoder["glu"] else 1
|
||||
|
||||
self.encoder = nn.ModuleList()
|
||||
self.decoder = nn.ModuleList()
|
||||
|
||||
for layer in range(encoder_decoder["depth"]):
|
||||
|
||||
encoder_layer = [nn.Conv1d(num_channels,hidden,encoder_decoder["kernel_size"],encoder_decoder["stride"]),
|
||||
nn.ReLU(),
|
||||
nn.Conv1d(hidden, hidden*multi_factor,encoder_decoder["kernel_size"],1),
|
||||
activation]
|
||||
encoder_layer = nn.Sequential(*encoder_layer)
|
||||
encoder_layer = DemucsEncoder(num_channels=num_channels,
|
||||
hidden_size=hidden,
|
||||
kernel_size=encoder_decoder["kernel_size"],
|
||||
stride=encoder_decoder["stride"],
|
||||
glu=encoder_decoder["glu"],
|
||||
)
|
||||
self.encoder.append(encoder_layer)
|
||||
|
||||
decoder_layer = [nn.Conv1d(hidden,hidden*multi_factor,encoder_decoder["kernel_size"],1),
|
||||
activation,
|
||||
nn.ConvTranspose1d(hidden,num_channels,encoder_decoder["kernel_size"],encoder_decoder["stride"])
|
||||
]
|
||||
if layer>0:
|
||||
decoder_layer.append(nn.ReLU())
|
||||
decoder_layer = nn.Sequential(*decoder_layer)
|
||||
decoder_layer = DemucsDecoder(num_channels=num_channels,
|
||||
hidden_size=hidden,
|
||||
kernel_size=encoder_decoder["kernel_size"],
|
||||
stride=1,
|
||||
glu=encoder_decoder["glu"],
|
||||
layer=layer
|
||||
)
|
||||
self.decoder.insert(0,decoder_layer)
|
||||
|
||||
num_channels = hidden
|
||||
hidden = self.ED_DEFAULTS["growth_factor"] * hidden
|
||||
|
||||
|
||||
self.de_lstm = DeLSTM(input_size=num_channels,hidden_size=num_channels,num_layers=lstm["num_layers"],bidirectional=lstm["bidirectional"])
|
||||
self.de_lstm = DemucsLSTM(input_size=num_channels,
|
||||
hidden_size=num_channels,
|
||||
num_layers=lstm["num_layers"],
|
||||
bidirectional=lstm["bidirectional"]
|
||||
)
|
||||
|
||||
def forward(self,mixed_signal):
|
||||
|
||||
|
|
|
|||
Loading…
Reference in New Issue