complex tranposed conv

This commit is contained in:
shahules786 2022-10-31 11:43:32 +05:30
parent 6f6e7f7ad8
commit 26cccc6772
1 changed files with 62 additions and 2 deletions

View File

@ -7,7 +7,7 @@ from torch import nn
def init_weights(nnet):
nn.init.xavier_normal_(nnet.weight.data)
nn.init.constant(nnet.bias, 0.0)
nn.init.constant_(nnet.bias, 0.0)
return nnet
@ -57,7 +57,6 @@ class ComplexConv2d(nn.Module):
def forward(self, input):
"""
forward
complex axis should be always 1 dim
"""
input = F.pad(input, [self.padding[1], self.padding[1], 0, 0])
@ -75,3 +74,64 @@ class ComplexConv2d(nn.Module):
out = torch.cat([real, imag], 1)
return out
class ComplexConvTranspose2d(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: int,
kernel_size: Tuple[int, int] = (1, 1),
stride: Tuple[int, int] = (1, 1),
padding: Tuple[int, int] = (0, 0),
output_padding: Tuple[int, int] = (0, 0),
groups: int = 1,
):
super().__init__()
self.in_channels = in_channels // 2
self.out_channels = out_channels // 2
self.kernel_size = kernel_size
self.stride = stride
self.padding = padding
self.groups = groups
self.output_padding = output_padding
self.real_conv = nn.ConvTranspose2d(
self.in_channels,
self.out_channels,
kernel_size=self.kernel_size,
stride=self.stride,
padding=self.padding,
output_padding=self.output_padding,
groups=self.groups,
)
self.imag_conv = nn.ConvTranspose2d(
self.in_channels,
self.out_channels,
kernel_size=self.kernel_size,
stride=self.stride,
padding=self.padding,
output_padding=self.output_padding,
groups=self.groups,
)
init_weights(self.real_conv)
init_weights(self.imag_conv)
def forward(self, input):
real, imag = torch.chunk(input, 2, 1)
real_real = self.real_conv(real)
real_imag = self.imag_conv(real)
imag_imag = self.imag_conv(imag)
imag_real = self.real_conv(imag)
real = real_real - imag_imag
imag = real_imag - imag_real
out = torch.cat([real, imag], 1)
return out