fix optimizer scheduler
This commit is contained in:
parent
58de41598e
commit
04782ba6e9
|
|
@ -4,10 +4,14 @@ from types import MethodType
|
|||
import hydra
|
||||
from hydra.utils import instantiate
|
||||
from omegaconf import DictConfig, OmegaConf
|
||||
from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint
|
||||
from pytorch_lightning.callbacks import (
|
||||
EarlyStopping,
|
||||
LearningRateMonitor,
|
||||
ModelCheckpoint,
|
||||
)
|
||||
from pytorch_lightning.loggers import MLFlowLogger
|
||||
from torch.optim.lr_scheduler import ReduceLROnPlateau
|
||||
from torch_audiomentations import BandPassFilter, Compose, Shift
|
||||
from torch_audiomentations import Compose, Shift
|
||||
|
||||
os.environ["HYDRA_FULL_ERROR"] = "1"
|
||||
JOB_ID = os.environ.get("SLURM_JOBID", "0")
|
||||
|
|
@ -29,7 +33,6 @@ def main(config: DictConfig):
|
|||
apply_augmentations = Compose(
|
||||
[
|
||||
Shift(min_shift=0.0, max_shift=1.0, shift_unit="seconds", p=0.5),
|
||||
BandPassFilter(p=0.5),
|
||||
]
|
||||
)
|
||||
|
||||
|
|
@ -52,6 +55,8 @@ def main(config: DictConfig):
|
|||
every_n_epochs=1,
|
||||
)
|
||||
callbacks.append(checkpoint)
|
||||
callbacks.append(LearningRateMonitor(logging_interval="epoch"))
|
||||
|
||||
if parameters.get("Early_stop", False):
|
||||
early_stopping = EarlyStopping(
|
||||
monitor="val_loss",
|
||||
|
|
@ -63,11 +68,11 @@ def main(config: DictConfig):
|
|||
)
|
||||
callbacks.append(early_stopping)
|
||||
|
||||
def configure_optimizer(self):
|
||||
def configure_optimizers(self):
|
||||
optimizer = instantiate(
|
||||
config.optimizer,
|
||||
lr=parameters.get("lr"),
|
||||
parameters=self.parameters(),
|
||||
params=self.parameters(),
|
||||
)
|
||||
scheduler = ReduceLROnPlateau(
|
||||
optimizer=optimizer,
|
||||
|
|
@ -77,9 +82,13 @@ def main(config: DictConfig):
|
|||
min_lr=parameters.get("min_lr", 1e-6),
|
||||
patience=parameters.get("ReduceLr_patience", 3),
|
||||
)
|
||||
return {"optimizer": optimizer, "lr_scheduler": scheduler}
|
||||
return {
|
||||
"optimizer": optimizer,
|
||||
"lr_scheduler": scheduler,
|
||||
"monitor": f'valid_{parameters.get("ReduceLr_monitor", "loss")}',
|
||||
}
|
||||
|
||||
model.configure_parameters = MethodType(configure_optimizer, model)
|
||||
model.configure_optimizers = MethodType(configure_optimizers, model)
|
||||
|
||||
trainer = instantiate(config.trainer, logger=logger, callbacks=callbacks)
|
||||
trainer.fit(model)
|
||||
|
|
|
|||
Loading…
Reference in New Issue