/*! * @file MIDI.hpp * Project Arduino MIDI Library * @brief MIDI Library for the Arduino - Inline implementations * @author Francois Best, lathoub * @date 24/02/11 * @license MIT - Copyright (c) 2015 Francois Best * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #pragma once BEGIN_MIDI_NAMESPACE /// \brief Constructor for MidiInterface. template inline MidiInterface::MidiInterface(Transport& inTransport) : mTransport(inTransport) , mInputChannel(0) , mRunningStatus_RX(InvalidType) , mRunningStatus_TX(InvalidType) , mPendingMessageExpectedLength(0) , mPendingMessageIndex(0) , mCurrentRpnNumber(0xffff) , mCurrentNrpnNumber(0xffff) , mLastMessageSentTime(0) , mLastMessageReceivedTime(0) , mSenderActiveSensingPeriodicity(Settings::SenderActiveSensingPeriodicity) , mReceiverActiveSensingActive(false) , mLastError(0) { static_assert(!(Settings::UseSenderActiveSensing && Settings::UseReceiverActiveSensing), "UseSenderActiveSensing and UseReceiverActiveSensing can't be both set to true."); } /*! \brief Destructor for MidiInterface. This is not really useful for the Arduino, as it is never called... */ template inline MidiInterface::~MidiInterface() { } // ----------------------------------------------------------------------------- /*! \brief Call the begin method in the setup() function of the Arduino. All parameters are set to their default values: - Input channel set to 1 if no value is specified - Full thru mirroring */ template MidiInterface& MidiInterface::begin(Channel inChannel) { // Initialise the Transport layer mTransport.begin(); mInputChannel = inChannel; mRunningStatus_TX = InvalidType; mRunningStatus_RX = InvalidType; mPendingMessageIndex = 0; mPendingMessageExpectedLength = 0; mCurrentRpnNumber = 0xffff; mCurrentNrpnNumber = 0xffff; mLastMessageSentTime = mLastMessageReceivedTime = Platform::now(); mMessage.valid = false; mMessage.type = InvalidType; mMessage.channel = 0; mMessage.data1 = 0; mMessage.data2 = 0; mMessage.length = 0; mThruFilterCallback = Transport::thruActivated ? thruOn : thruOff; mThruMapCallback = thruEcho; return *this; } // ----------------------------------------------------------------------------- // Output // ----------------------------------------------------------------------------- /*! \addtogroup output @{ */ /*! \brief Send a MIDI message. \param inMessage The message This method is used when you want to send a Message that has not been constructed by the library, but by an external source. This method does *not* check against any of the constraints. Typically this function is use by MIDI Bridges taking MIDI messages and passing them thru. */ template MidiInterface& MidiInterface::send(const MidiMessage& inMessage) { if (!inMessage.valid) return *this; if (mTransport.beginTransmission(inMessage.type)) { if (inMessage.isSystemRealTime()) { mTransport.write(inMessage.type); } else if (inMessage.isChannelMessage()) { const StatusByte status = getStatus(inMessage.type, inMessage.channel); mTransport.write(status); if (inMessage.length > 1) mTransport.write(inMessage.data1); if (inMessage.length > 2) mTransport.write(inMessage.data2); } else if (inMessage.type == MidiType::SystemExclusive) { const unsigned size = inMessage.getSysExSize(); for (size_t i = 0; i < size; i++) mTransport.write(inMessage.sysexArray[i]); } else // at this point, it it assumed to be a system common message { mTransport.write(inMessage.type); if (inMessage.length > 1) mTransport.write(inMessage.data1); if (inMessage.length > 2) mTransport.write(inMessage.data2); } } mTransport.endTransmission(); updateLastSentTime(); return *this; } /*! \brief Generate and send a MIDI message from the values given. \param inType The message type (see type defines for reference) \param inData1 The first data byte. \param inData2 The second data byte (if the message contains only 1 data byte, set this one to 0). \param inChannel The output channel on which the message will be sent (values from 1 to 16). Note: you cannot send to OMNI. This is an internal method, use it only if you need to send raw data from your code, at your own risks. */ template MidiInterface& MidiInterface::send(MidiType inType, DataByte inData1, DataByte inData2, Channel inChannel) { if (inType <= PitchBend) // Channel messages { // Then test if channel is valid if (inChannel >= MIDI_CHANNEL_OFF || inChannel == MIDI_CHANNEL_OMNI || inType < 0x80) { return *this; // Don't send anything } // Protection: remove MSBs on data inData1 &= 0x7f; inData2 &= 0x7f; const StatusByte status = getStatus(inType, inChannel); if (mTransport.beginTransmission(inType)) { if (Settings::UseRunningStatus) { if (mRunningStatus_TX != status) { // New message, memorise and send header mRunningStatus_TX = status; mTransport.write(mRunningStatus_TX); } } else { // Don't care about running status, send the status byte. mTransport.write(status); } // Then send data mTransport.write(inData1); if (inType != ProgramChange && inType != AfterTouchChannel) { mTransport.write(inData2); } mTransport.endTransmission(); updateLastSentTime(); } } else if (inType >= Clock && inType <= SystemReset) { sendRealTime(inType); // System Real-time and 1 byte. } return *this; } // ----------------------------------------------------------------------------- /*! \brief Send a Note On message \param inNoteNumber Pitch value in the MIDI format (0 to 127). \param inVelocity Note attack velocity (0 to 127). A NoteOn with 0 velocity is considered as a NoteOff. \param inChannel The channel on which the message will be sent (1 to 16). Take a look at the values, names and frequencies of notes here: http://www.phys.unsw.edu.au/jw/notes.html */ template MidiInterface& MidiInterface::sendNoteOn(DataByte inNoteNumber, DataByte inVelocity, Channel inChannel) { return send(NoteOn, inNoteNumber, inVelocity, inChannel); } /*! \brief Send a Note Off message \param inNoteNumber Pitch value in the MIDI format (0 to 127). \param inVelocity Release velocity (0 to 127). \param inChannel The channel on which the message will be sent (1 to 16). Note: you can send NoteOn with zero velocity to make a NoteOff, this is based on the Running Status principle, to avoid sending status messages and thus sending only NoteOn data. sendNoteOff will always send a real NoteOff message. Take a look at the values, names and frequencies of notes here: http://www.phys.unsw.edu.au/jw/notes.html */ template MidiInterface& MidiInterface::sendNoteOff(DataByte inNoteNumber, DataByte inVelocity, Channel inChannel) { return send(NoteOff, inNoteNumber, inVelocity, inChannel); } /*! \brief Send a Program Change message \param inProgramNumber The Program to select (0 to 127). \param inChannel The channel on which the message will be sent (1 to 16). */ template MidiInterface& MidiInterface::sendProgramChange(DataByte inProgramNumber, Channel inChannel) { return send(ProgramChange, inProgramNumber, 0, inChannel); } /*! \brief Send a Control Change message \param inControlNumber The controller number (0 to 127). \param inControlValue The value for the specified controller (0 to 127). \param inChannel The channel on which the message will be sent (1 to 16). @see MidiControlChangeNumber */ template MidiInterface& MidiInterface::sendControlChange(DataByte inControlNumber, DataByte inControlValue, Channel inChannel) { return send(ControlChange, inControlNumber, inControlValue, inChannel); } /*! \brief Send a Polyphonic AfterTouch message (applies to a specified note) \param inNoteNumber The note to apply AfterTouch to (0 to 127). \param inPressure The amount of AfterTouch to apply (0 to 127). \param inChannel The channel on which the message will be sent (1 to 16). Note: this method is deprecated and will be removed in a future revision of the library, @see sendAfterTouch to send polyphonic and monophonic AfterTouch messages. */ template MidiInterface& MidiInterface::sendPolyPressure(DataByte inNoteNumber, DataByte inPressure, Channel inChannel) { return send(AfterTouchPoly, inNoteNumber, inPressure, inChannel); } /*! \brief Send a MonoPhonic AfterTouch message (applies to all notes) \param inPressure The amount of AfterTouch to apply to all notes. \param inChannel The channel on which the message will be sent (1 to 16). */ template MidiInterface& MidiInterface::sendAfterTouch(DataByte inPressure, Channel inChannel) { return send(AfterTouchChannel, inPressure, 0, inChannel); } /*! \brief Send a Polyphonic AfterTouch message (applies to a specified note) \param inNoteNumber The note to apply AfterTouch to (0 to 127). \param inPressure The amount of AfterTouch to apply (0 to 127). \param inChannel The channel on which the message will be sent (1 to 16). @see Replaces sendPolyPressure (which is now deprecated). */ template MidiInterface& MidiInterface::sendAfterTouch(DataByte inNoteNumber, DataByte inPressure, Channel inChannel) { return send(AfterTouchPoly, inNoteNumber, inPressure, inChannel); } /*! \brief Send a Pitch Bend message using a signed integer value. \param inPitchValue The amount of bend to send (in a signed integer format), between MIDI_PITCHBEND_MIN and MIDI_PITCHBEND_MAX, center value is 0. \param inChannel The channel on which the message will be sent (1 to 16). */ template MidiInterface& MidiInterface::sendPitchBend(int inPitchValue, Channel inChannel) { const unsigned bend = unsigned(inPitchValue - int(MIDI_PITCHBEND_MIN)); return send(PitchBend, (bend & 0x7f), (bend >> 7) & 0x7f, inChannel); } /*! \brief Send a Pitch Bend message using a floating point value. \param inPitchValue The amount of bend to send (in a floating point format), between -1.0f (maximum downwards bend) and +1.0f (max upwards bend), center value is 0.0f. \param inChannel The channel on which the message will be sent (1 to 16). */ template MidiInterface& MidiInterface::sendPitchBend(double inPitchValue, Channel inChannel) { const int scale = inPitchValue > 0.0 ? MIDI_PITCHBEND_MAX : - MIDI_PITCHBEND_MIN; const int value = int(inPitchValue * double(scale)); return sendPitchBend(value, inChannel); } /*! \brief Generate and send a System Exclusive frame. \param inLength The size of the array to send \param inArray The byte array containing the data to send \param inArrayContainsBoundaries When set to 'true', 0xf0 & 0xf7 bytes (start & stop SysEx) will NOT be sent (and therefore must be included in the array). default value for ArrayContainsBoundaries is set to 'false' for compatibility with previous versions of the library. */ template MidiInterface& MidiInterface::sendSysEx(unsigned inLength, const byte* inArray, bool inArrayContainsBoundaries) { const bool writeBeginEndBytes = !inArrayContainsBoundaries; if (mTransport.beginTransmission(MidiType::SystemExclusiveStart)) { if (writeBeginEndBytes) mTransport.write(MidiType::SystemExclusiveStart); for (unsigned i = 0; i < inLength; ++i) mTransport.write(inArray[i]); if (writeBeginEndBytes) mTransport.write(MidiType::SystemExclusiveEnd); mTransport.endTransmission(); updateLastSentTime(); } if (Settings::UseRunningStatus) { mRunningStatus_TX = InvalidType; } return *this; } /*! \brief Send a Tune Request message. When a MIDI unit receives this message, it should tune its oscillators (if equipped with any). */ template MidiInterface& MidiInterface::sendTuneRequest() { return sendCommon(TuneRequest); } /*! \brief Send a MIDI Time Code Quarter Frame. \param inTypeNibble MTC type \param inValuesNibble MTC data See MIDI Specification for more information. */ template MidiInterface& MidiInterface::sendTimeCodeQuarterFrame(DataByte inTypeNibble, DataByte inValuesNibble) { const byte data = byte((((inTypeNibble & 0x07) << 4) | (inValuesNibble & 0x0f))); return sendTimeCodeQuarterFrame(data); } /*! \brief Send a MIDI Time Code Quarter Frame. See MIDI Specification for more information. \param inData if you want to encode directly the nibbles in your program, you can send the byte here. */ template MidiInterface& MidiInterface::sendTimeCodeQuarterFrame(DataByte inData) { return sendCommon(TimeCodeQuarterFrame, inData); } /*! \brief Send a Song Position Pointer message. \param inBeats The number of beats since the start of the song. */ template MidiInterface& MidiInterface::sendSongPosition(unsigned inBeats) { return sendCommon(SongPosition, inBeats); } /*! \brief Send a Song Select message */ template MidiInterface& MidiInterface::sendSongSelect(DataByte inSongNumber) { return sendCommon(SongSelect, inSongNumber); } /*! \brief Send a Common message. Common messages reset the running status. \param inType The available Common types are: TimeCodeQuarterFrame, SongPosition, SongSelect and TuneRequest. @see MidiType \param inData1 The byte that goes with the common message. */ template MidiInterface& MidiInterface::sendCommon(MidiType inType, unsigned inData1) { switch (inType) { case TimeCodeQuarterFrame: case SongPosition: case SongSelect: case TuneRequest: break; default: // Invalid Common marker return *this; } if (mTransport.beginTransmission(inType)) { mTransport.write((byte)inType); switch (inType) { case TimeCodeQuarterFrame: mTransport.write(inData1); break; case SongPosition: mTransport.write(inData1 & 0x7f); mTransport.write((inData1 >> 7) & 0x7f); break; case SongSelect: mTransport.write(inData1 & 0x7f); break; case TuneRequest: break; // LCOV_EXCL_START - Coverage blind spot default: break; // LCOV_EXCL_STOP } mTransport.endTransmission(); updateLastSentTime(); } if (Settings::UseRunningStatus) { mRunningStatus_TX = InvalidType; } return *this; } /*! \brief Send a Real Time (one byte) message. \param inType The available Real Time types are: Start, Stop, Continue, Clock, ActiveSensing and SystemReset. @see MidiType */ template MidiInterface& MidiInterface::sendRealTime(MidiType inType) { // Do not invalidate Running Status for real-time messages // as they can be interleaved within any message. switch (inType) { case Clock: case Start: case Stop: case Continue: case ActiveSensing: case SystemReset: if (mTransport.beginTransmission(inType)) { mTransport.write((byte)inType); mTransport.endTransmission(); updateLastSentTime(); } break; default: // Invalid Real Time marker break; } return *this; } /*! \brief Start a Registered Parameter Number frame. \param inNumber The 14-bit number of the RPN you want to select. \param inChannel The channel on which the message will be sent (1 to 16). */ template inline MidiInterface& MidiInterface::beginRpn(unsigned inNumber, Channel inChannel) { if (mCurrentRpnNumber != inNumber) { const byte numMsb = 0x7f & (inNumber >> 7); const byte numLsb = 0x7f & inNumber; sendControlChange(RPNLSB, numLsb, inChannel); sendControlChange(RPNMSB, numMsb, inChannel); mCurrentRpnNumber = inNumber; } return *this; } /*! \brief Send a 14-bit value for the currently selected RPN number. \param inValue The 14-bit value of the selected RPN. \param inChannel The channel on which the message will be sent (1 to 16). */ template inline MidiInterface& MidiInterface::sendRpnValue(unsigned inValue, Channel inChannel) {; const byte valMsb = 0x7f & (inValue >> 7); const byte valLsb = 0x7f & inValue; sendControlChange(DataEntryMSB, valMsb, inChannel); sendControlChange(DataEntryLSB, valLsb, inChannel); return *this; } /*! \brief Send separate MSB/LSB values for the currently selected RPN number. \param inMsb The MSB part of the value to send. Meaning depends on RPN number. \param inLsb The LSB part of the value to send. Meaning depends on RPN number. \param inChannel The channel on which the message will be sent (1 to 16). */ template inline MidiInterface& MidiInterface::sendRpnValue(byte inMsb, byte inLsb, Channel inChannel) { sendControlChange(DataEntryMSB, inMsb, inChannel); sendControlChange(DataEntryLSB, inLsb, inChannel); return *this; } /* \brief Increment the value of the currently selected RPN number by the specified amount. \param inAmount The amount to add to the currently selected RPN value. */ template inline MidiInterface& MidiInterface::sendRpnIncrement(byte inAmount, Channel inChannel) { sendControlChange(DataIncrement, inAmount, inChannel); return *this; } /* \brief Decrement the value of the currently selected RPN number by the specified amount. \param inAmount The amount to subtract to the currently selected RPN value. */ template inline MidiInterface& MidiInterface::sendRpnDecrement(byte inAmount, Channel inChannel) { sendControlChange(DataDecrement, inAmount, inChannel); return *this; } /*! \brief Terminate an RPN frame. This will send a Null Function to deselect the currently selected RPN. \param inChannel The channel on which the message will be sent (1 to 16). */ template inline MidiInterface& MidiInterface::endRpn(Channel inChannel) { sendControlChange(RPNLSB, 0x7f, inChannel); sendControlChange(RPNMSB, 0x7f, inChannel); mCurrentRpnNumber = 0xffff; return *this; } /*! \brief Start a Non-Registered Parameter Number frame. \param inNumber The 14-bit number of the NRPN you want to select. \param inChannel The channel on which the message will be sent (1 to 16). */ template inline MidiInterface& MidiInterface::beginNrpn(unsigned inNumber, Channel inChannel) { if (mCurrentNrpnNumber != inNumber) { const byte numMsb = 0x7f & (inNumber >> 7); const byte numLsb = 0x7f & inNumber; sendControlChange(NRPNLSB, numLsb, inChannel); sendControlChange(NRPNMSB, numMsb, inChannel); mCurrentNrpnNumber = inNumber; } return *this; } /*! \brief Send a 14-bit value for the currently selected NRPN number. \param inValue The 14-bit value of the selected NRPN. \param inChannel The channel on which the message will be sent (1 to 16). */ template inline MidiInterface& MidiInterface::sendNrpnValue(unsigned inValue, Channel inChannel) { const byte valMsb = 0x7f & (inValue >> 7); const byte valLsb = 0x7f & inValue; sendControlChange(DataEntryMSB, valMsb, inChannel); sendControlChange(DataEntryLSB, valLsb, inChannel); return *this; } /*! \brief Send separate MSB/LSB values for the currently selected NRPN number. \param inMsb The MSB part of the value to send. Meaning depends on NRPN number. \param inLsb The LSB part of the value to send. Meaning depends on NRPN number. \param inChannel The channel on which the message will be sent (1 to 16). */ template inline MidiInterface& MidiInterface::sendNrpnValue(byte inMsb, byte inLsb, Channel inChannel) { sendControlChange(DataEntryMSB, inMsb, inChannel); sendControlChange(DataEntryLSB, inLsb, inChannel); return *this; } /* \brief Increment the value of the currently selected NRPN number by the specified amount. \param inAmount The amount to add to the currently selected NRPN value. */ template inline MidiInterface& MidiInterface::sendNrpnIncrement(byte inAmount, Channel inChannel) { sendControlChange(DataIncrement, inAmount, inChannel); return *this; } /* \brief Decrement the value of the currently selected NRPN number by the specified amount. \param inAmount The amount to subtract to the currently selected NRPN value. */ template inline MidiInterface& MidiInterface::sendNrpnDecrement(byte inAmount, Channel inChannel) { sendControlChange(DataDecrement, inAmount, inChannel); return *this; } /*! \brief Terminate an NRPN frame. This will send a Null Function to deselect the currently selected NRPN. \param inChannel The channel on which the message will be sent (1 to 16). */ template inline MidiInterface& MidiInterface::endNrpn(Channel inChannel) { sendControlChange(NRPNLSB, 0x7f, inChannel); sendControlChange(NRPNMSB, 0x7f, inChannel); mCurrentNrpnNumber = 0xffff; return *this; } template inline void MidiInterface::updateLastSentTime() { if (Settings::UseSenderActiveSensing && mSenderActiveSensingPeriodicity) mLastMessageSentTime = Platform::now(); } /*! @} */ // End of doc group MIDI Output // ----------------------------------------------------------------------------- template StatusByte MidiInterface::getStatus(MidiType inType, Channel inChannel) const { return StatusByte(((byte)inType | ((inChannel - 1) & 0x0f))); } // ----------------------------------------------------------------------------- // Input // ----------------------------------------------------------------------------- /*! \addtogroup input @{ */ /*! \brief Read messages from the serial port using the main input channel. \return True if a valid message has been stored in the structure, false if not. A valid message is a message that matches the input channel. \n\n If the Thru is enabled and the message matches the filter, it is sent back on the MIDI output. @see see setInputChannel() */ template inline bool MidiInterface::read() { return read(mInputChannel); } /*! \brief Read messages on a specified channel. */ template inline bool MidiInterface::read(Channel inChannel) { #ifndef RegionActiveSending // Active Sensing. This message is intended to be sent // repeatedly to tell the receiver that a connection is alive. Use // of this message is optional. if (Settings::UseSenderActiveSensing) { // Send ActiveSensing ms after the last command if ((Platform::now() - mLastMessageSentTime) > Settings::SenderActiveSensingPeriodicity) sendActiveSensing(); } // Once an Active Sensing message is received, the unit will begin monitoring // the intervalbetween all subsequent messages. If there is an interval of 420 ms // or longer betweenmessages while monitoring is active, the same processing // as when All Sound Off, All Notes Off,and Reset All Controllers messages are // received will be carried out. The unit will then stopmonitoring the message interval. if (Settings::UseReceiverActiveSensing && mReceiverActiveSensingActive) { if ((Platform::now() - mLastMessageReceivedTime > Settings::ReceiverActiveSensingTimeout)) { mReceiverActiveSensingActive = false; // its up to the handler to send the stop processing messages // (also, no clue what the channel is on which to send them) mActiveSensingTimeoutCallback(mReceiverActiveSensingActive); } } #endif if (inChannel >= MIDI_CHANNEL_OFF) return false; // MIDI Input disabled. if (!parse()) return false; #ifndef RegionActiveSending if (Settings::UseReceiverActiveSensing) { mLastMessageReceivedTime = Platform::now(); if (mMessage.type == ActiveSensing && !mReceiverActiveSensingActive) { mReceiverActiveSensingActive = true; mActiveSensingTimeoutCallback(mReceiverActiveSensingActive); } } #endif handleNullVelocityNoteOnAsNoteOff(); const bool channelMatch = inputFilter(inChannel); if (channelMatch) launchCallback(); processThru(); return channelMatch; } // ----------------------------------------------------------------------------- // Private method: MIDI parser template bool MidiInterface::parse() { if (mTransport.available() == 0) return false; // No data available. // clear the ErrorParse bit mLastError &= ~(1UL << ErrorParse); // Parsing algorithm: // Get a byte from the serial buffer. // If there is no pending message to be recomposed, start a new one. // - Find type and channel (if pertinent) // - Look for other bytes in buffer, call parser recursively, // until the message is assembled or the buffer is empty. // Else, add the extracted byte to the pending message, and check validity. // When the message is done, store it. const byte extracted = mTransport.read(); // Ignore Undefined if (extracted == Undefined_FD) return (Settings::Use1ByteParsing) ? false : parse(); if (mPendingMessageIndex == 0) { // Start a new pending message mPendingMessage[0] = extracted; // Check for running status first if (isChannelMessage(getTypeFromStatusByte(mRunningStatus_RX))) { // Only these types allow Running Status // If the status byte is not received, prepend it // to the pending message if (extracted < 0x80) { mPendingMessage[0] = mRunningStatus_RX; mPendingMessage[1] = extracted; mPendingMessageIndex = 1; } // Else: well, we received another status byte, // so the running status does not apply here. // It will be updated upon completion of this message. } const MidiType pendingType = getTypeFromStatusByte(mPendingMessage[0]); switch (pendingType) { // 1 byte messages case Start: case Continue: case Stop: case Clock: case Tick: case ActiveSensing: case SystemReset: case TuneRequest: // Handle the message type directly here. mMessage.type = pendingType; mMessage.channel = 0; mMessage.data1 = 0; mMessage.data2 = 0; mMessage.valid = true; // Do not reset all input attributes, Running Status must remain unchanged. // We still need to reset these mPendingMessageIndex = 0; mPendingMessageExpectedLength = 0; return true; break; // 2 bytes messages case ProgramChange: case AfterTouchChannel: case TimeCodeQuarterFrame: case SongSelect: mPendingMessageExpectedLength = 2; break; // 3 bytes messages case NoteOn: case NoteOff: case ControlChange: case PitchBend: case AfterTouchPoly: case SongPosition: mPendingMessageExpectedLength = 3; break; case SystemExclusiveStart: case SystemExclusiveEnd: // The message can be any length // between 3 and MidiMessage::sSysExMaxSize bytes mPendingMessageExpectedLength = MidiMessage::sSysExMaxSize; mRunningStatus_RX = InvalidType; mMessage.sysexArray[0] = pendingType; break; case InvalidType: default: // This is obviously wrong. Let's get the hell out'a here. mLastError |= 1UL << ErrorParse; // set the ErrorParse bit if (mErrorCallback) mErrorCallback(mLastError); // LCOV_EXCL_LINE resetInput(); return false; break; } if (mPendingMessageIndex >= (mPendingMessageExpectedLength - 1)) { // Reception complete mMessage.type = pendingType; mMessage.channel = getChannelFromStatusByte(mPendingMessage[0]); mMessage.data1 = mPendingMessage[1]; mMessage.data2 = 0; // Completed new message has 1 data byte mMessage.length = 1; mPendingMessageIndex = 0; mPendingMessageExpectedLength = 0; mMessage.valid = true; return true; } else { // Waiting for more data mPendingMessageIndex++; } return (Settings::Use1ByteParsing) ? false : parse(); } else { // First, test if this is a status byte if (extracted >= 0x80) { // Reception of status bytes in the middle of an uncompleted message // are allowed only for interleaved Real Time message or EOX switch (extracted) { case Clock: case Start: case Tick: case Continue: case Stop: case ActiveSensing: case SystemReset: // Here we will have to extract the one-byte message, // pass it to the structure for being read outside // the MIDI class, and recompose the message it was // interleaved into. Oh, and without killing the running status.. // This is done by leaving the pending message as is, // it will be completed on next calls. mMessage.type = (MidiType)extracted; mMessage.data1 = 0; mMessage.data2 = 0; mMessage.channel = 0; mMessage.length = 1; mMessage.valid = true; return true; // Exclusive case SystemExclusiveStart: case SystemExclusiveEnd: if ((mMessage.sysexArray[0] == SystemExclusiveStart) || (mMessage.sysexArray[0] == SystemExclusiveEnd)) { // Store the last byte (EOX) mMessage.sysexArray[mPendingMessageIndex++] = extracted; mMessage.type = SystemExclusive; // Get length mMessage.data1 = mPendingMessageIndex & 0xff; // LSB mMessage.data2 = byte(mPendingMessageIndex >> 8); // MSB mMessage.channel = 0; mMessage.length = mPendingMessageIndex; mMessage.valid = true; resetInput(); return true; } else { // Well well well.. error. mLastError |= 1UL << ErrorParse; // set the error bits if (mErrorCallback) mErrorCallback(mLastError); // LCOV_EXCL_LINE resetInput(); return false; } // LCOV_EXCL_START - Coverage blind spot default: break; // LCOV_EXCL_STOP } } // Add extracted data byte to pending message if ((mPendingMessage[0] == SystemExclusiveStart) || (mPendingMessage[0] == SystemExclusiveEnd)) mMessage.sysexArray[mPendingMessageIndex] = extracted; else mPendingMessage[mPendingMessageIndex] = extracted; // Now we are going to check if we have reached the end of the message if (mPendingMessageIndex >= (mPendingMessageExpectedLength - 1)) { // SysEx larger than the allocated buffer size, // Split SysEx like so: // first: 0xF0 .... 0xF0 // midlle: 0xF7 .... 0xF0 // last: 0xF7 .... 0xF7 if ((mPendingMessage[0] == SystemExclusiveStart) || (mPendingMessage[0] == SystemExclusiveEnd)) { auto lastByte = mMessage.sysexArray[Settings::SysExMaxSize - 1]; mMessage.sysexArray[Settings::SysExMaxSize - 1] = SystemExclusiveStart; mMessage.type = SystemExclusive; // Get length mMessage.data1 = Settings::SysExMaxSize & 0xff; // LSB mMessage.data2 = byte(Settings::SysExMaxSize >> 8); // MSB mMessage.channel = 0; mMessage.length = Settings::SysExMaxSize; mMessage.valid = true; // No need to check against the inputChannel, // SysEx ignores input channel launchCallback(); mMessage.sysexArray[0] = SystemExclusiveEnd; mMessage.sysexArray[1] = lastByte; mPendingMessageIndex = 2; return false; } mMessage.type = getTypeFromStatusByte(mPendingMessage[0]); if (isChannelMessage(mMessage.type)) mMessage.channel = getChannelFromStatusByte(mPendingMessage[0]); else mMessage.channel = 0; mMessage.data1 = mPendingMessage[1]; // Save data2 only if applicable mMessage.data2 = mPendingMessageExpectedLength == 3 ? mPendingMessage[2] : 0; mMessage.length = mPendingMessageExpectedLength; // Reset local variables mPendingMessageIndex = 0; mPendingMessageExpectedLength = 0; mMessage.valid = true; // Activate running status (if enabled for the received type) switch (mMessage.type) { case NoteOff: case NoteOn: case AfterTouchPoly: case ControlChange: case ProgramChange: case AfterTouchChannel: case PitchBend: // Running status enabled: store it from received message mRunningStatus_RX = mPendingMessage[0]; break; default: // No running status mRunningStatus_RX = InvalidType; break; } return true; } else { // Then update the index of the pending message. mPendingMessageIndex++; return (Settings::Use1ByteParsing) ? false : parse(); } } } // Private method, see midi_Settings.h for documentation template inline void MidiInterface::handleNullVelocityNoteOnAsNoteOff() { if (Settings::HandleNullVelocityNoteOnAsNoteOff && getType() == NoteOn && getData2() == 0) { mMessage.type = NoteOff; } } // Private method: check if the received message is on the listened channel template inline bool MidiInterface::inputFilter(Channel inChannel) { // This method handles recognition of channel // (to know if the message is destinated to the Arduino) // First, check if the received message is Channel if (mMessage.type >= NoteOff && mMessage.type <= PitchBend) { // Then we need to know if we listen to it if ((mMessage.channel == inChannel) || (inChannel == MIDI_CHANNEL_OMNI)) { return true; } else { // We don't listen to this channel return false; } } else { // System messages are always received return true; } } // Private method: reset input attributes template inline void MidiInterface::resetInput() { mPendingMessageIndex = 0; mPendingMessageExpectedLength = 0; mRunningStatus_RX = InvalidType; } // ----------------------------------------------------------------------------- /*! \brief Get the last received message's type Returns an enumerated type. @see MidiType */ template inline MidiType MidiInterface::getType() const { return mMessage.type; } /*! \brief Get the channel of the message stored in the structure. \return Channel range is 1 to 16. For non-channel messages, this will return 0. */ template inline Channel MidiInterface::getChannel() const { return mMessage.channel; } /*! \brief Get the first data byte of the last received message. */ template inline DataByte MidiInterface::getData1() const { return mMessage.data1; } /*! \brief Get the second data byte of the last received message. */ template inline DataByte MidiInterface::getData2() const { return mMessage.data2; } /*! \brief Get the System Exclusive byte array. @see getSysExArrayLength to get the array's length in bytes. */ template inline const byte* MidiInterface::getSysExArray() const { return mMessage.sysexArray; } /*! \brief Get the length of the System Exclusive array. It is coded using data1 as LSB and data2 as MSB. \return The array's length, in bytes. */ template inline unsigned MidiInterface::getSysExArrayLength() const { return mMessage.getSysExSize(); } /*! \brief Check if a valid message is stored in the structure. */ template inline bool MidiInterface::check() const { return mMessage.valid; } // ----------------------------------------------------------------------------- template inline Channel MidiInterface::getInputChannel() const { return mInputChannel; } /*! \brief Set the value for the input MIDI channel \param inChannel the channel value. Valid values are 1 to 16, MIDI_CHANNEL_OMNI if you want to listen to all channels, and MIDI_CHANNEL_OFF to disable input. */ template inline MidiInterface& MidiInterface::setInputChannel(Channel inChannel) { mInputChannel = inChannel; return *this; } // ----------------------------------------------------------------------------- /*! \brief Extract an enumerated MIDI type from a status byte. This is a utility static method, used internally, made public so you can handle MidiTypes more easily. */ template MidiType MidiInterface::getTypeFromStatusByte(byte inStatus) { if ((inStatus < 0x80) || (inStatus == Undefined_F4) || (inStatus == Undefined_F5) || (inStatus == Undefined_FD)) return InvalidType; // Data bytes and undefined. if (inStatus < 0xf0) // Channel message, remove channel nibble. return MidiType(inStatus & 0xf0); return MidiType(inStatus); } /*! \brief Returns channel in the range 1-16 */ template inline Channel MidiInterface::getChannelFromStatusByte(byte inStatus) { return Channel((inStatus & 0x0f) + 1); } template bool MidiInterface::isChannelMessage(MidiType inType) { return (inType == NoteOff || inType == NoteOn || inType == ControlChange || inType == AfterTouchPoly || inType == AfterTouchChannel || inType == PitchBend || inType == ProgramChange); } // ----------------------------------------------------------------------------- /*! \brief Detach an external function from the given type. Use this method to cancel the effects of setHandle********. \param inType The type of message to unbind. When a message of this type is received, no function will be called. */ template MidiInterface& MidiInterface::disconnectCallbackFromType(MidiType inType) { switch (inType) { case NoteOff: mNoteOffCallback = nullptr; break; case NoteOn: mNoteOnCallback = nullptr; break; case AfterTouchPoly: mAfterTouchPolyCallback = nullptr; break; case ControlChange: mControlChangeCallback = nullptr; break; case ProgramChange: mProgramChangeCallback = nullptr; break; case AfterTouchChannel: mAfterTouchChannelCallback = nullptr; break; case PitchBend: mPitchBendCallback = nullptr; break; case SystemExclusive: mSystemExclusiveCallback = nullptr; break; case TimeCodeQuarterFrame: mTimeCodeQuarterFrameCallback = nullptr; break; case SongPosition: mSongPositionCallback = nullptr; break; case SongSelect: mSongSelectCallback = nullptr; break; case TuneRequest: mTuneRequestCallback = nullptr; break; case Clock: mClockCallback = nullptr; break; case Start: mStartCallback = nullptr; break; case Tick: mTickCallback = nullptr; break; case Continue: mContinueCallback = nullptr; break; case Stop: mStopCallback = nullptr; break; case ActiveSensing: mActiveSensingCallback = nullptr; break; case SystemReset: mSystemResetCallback = nullptr; break; default: break; } return *this; } /*! @} */ // End of doc group MIDI Callbacks // Private - launch callback function based on received type. template void MidiInterface::launchCallback() { if (mMessageCallback != 0) mMessageCallback(mMessage); // The order is mixed to allow frequent messages to trigger their callback faster. switch (mMessage.type) { // Notes case NoteOff: if (mNoteOffCallback != nullptr) mNoteOffCallback(mMessage.channel, mMessage.data1, mMessage.data2); break; case NoteOn: if (mNoteOnCallback != nullptr) mNoteOnCallback(mMessage.channel, mMessage.data1, mMessage.data2); break; // Real-time messages case Clock: if (mClockCallback != nullptr) mClockCallback(); break; case Start: if (mStartCallback != nullptr) mStartCallback(); break; case Tick: if (mTickCallback != nullptr) mTickCallback(); break; case Continue: if (mContinueCallback != nullptr) mContinueCallback(); break; case Stop: if (mStopCallback != nullptr) mStopCallback(); break; case ActiveSensing: if (mActiveSensingCallback != nullptr) mActiveSensingCallback(); break; // Continuous controllers case ControlChange: if (mControlChangeCallback != nullptr) mControlChangeCallback(mMessage.channel, mMessage.data1, mMessage.data2); break; case PitchBend: if (mPitchBendCallback != nullptr) mPitchBendCallback(mMessage.channel, (int)((mMessage.data1 & 0x7f) | ((mMessage.data2 & 0x7f) << 7)) + MIDI_PITCHBEND_MIN); break; case AfterTouchPoly: if (mAfterTouchPolyCallback != nullptr) mAfterTouchPolyCallback(mMessage.channel, mMessage.data1, mMessage.data2); break; case AfterTouchChannel: if (mAfterTouchChannelCallback != nullptr) mAfterTouchChannelCallback(mMessage.channel, mMessage.data1); break; case ProgramChange: if (mProgramChangeCallback != nullptr) mProgramChangeCallback(mMessage.channel, mMessage.data1); break; case SystemExclusive: if (mSystemExclusiveCallback != nullptr) mSystemExclusiveCallback(mMessage.sysexArray, mMessage.getSysExSize()); break; // Occasional messages case TimeCodeQuarterFrame: if (mTimeCodeQuarterFrameCallback != nullptr) mTimeCodeQuarterFrameCallback(mMessage.data1); break; case SongPosition: if (mSongPositionCallback != nullptr) mSongPositionCallback(unsigned((mMessage.data1 & 0x7f) | ((mMessage.data2 & 0x7f) << 7))); break; case SongSelect: if (mSongSelectCallback != nullptr) mSongSelectCallback(mMessage.data1); break; case TuneRequest: if (mTuneRequestCallback != nullptr) mTuneRequestCallback(); break; case SystemReset: if (mSystemResetCallback != nullptr) mSystemResetCallback(); break; // LCOV_EXCL_START - Unreacheable code, but prevents unhandled case warning. case InvalidType: default: break; // LCOV_EXCL_STOP } } /*! @} */ // End of doc group MIDI Input // ----------------------------------------------------------------------------- // Thru // ----------------------------------------------------------------------------- /*! \addtogroup thru @{ */ template inline MidiInterface& MidiInterface::turnThruOn(ThruFilterCallback fptr) { mThruFilterCallback = fptr; return *this; } template inline MidiInterface& MidiInterface::turnThruOff() { mThruFilterCallback = thruOff; if (Settings::UseSenderActiveSensing) { mLastMessageSentTime = Platform::now(); } return *this; } /*! @} */ // End of doc group MIDI Thru // This method is called upon reception of a message // and takes care of Thru filtering and sending. // - All system messages (System Exclusive, Common and Real Time) are passed // to output unless filter is set to Off. // - Channel messages are passed to the output whether their channel // is matching the input channel and the filter setting template void MidiInterface::processThru() { if (!Transport::thruActivated || !mThruFilterCallback(mMessage)) return; MidiMessage thruMessage = mThruMapCallback(mMessage); // First, check if the received message is Channel if (thruMessage.type >= NoteOff && thruMessage.type <= PitchBend) { send(thruMessage.type, thruMessage.data1, thruMessage.data2, thruMessage.channel); } else { // Send the message to the output switch (thruMessage.type) { // Real Time and 1 byte case Clock: case Start: case Stop: case Continue: case ActiveSensing: case SystemReset: case TuneRequest: sendRealTime(thruMessage.type); break; case SystemExclusive: // Send SysEx (0xf0 and 0xf7 are included in the buffer) sendSysEx(thruMessage.getSysExSize(), thruMessage.sysexArray, true); break; case SongSelect: sendSongSelect(thruMessage.data1); break; case SongPosition: sendSongPosition(thruMessage.data1 | ((unsigned)thruMessage.data2 << 7)); break; case TimeCodeQuarterFrame: sendTimeCodeQuarterFrame(thruMessage.data1,thruMessage.data2); break; default: break; // LCOV_EXCL_LINE - Unreacheable code, but prevents unhandled case warning. } } } END_MIDI_NAMESPACE