443 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			443 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			C++
		
	
	
	
| // Adapted by Bodmer to work with a NodeMCU and ILI9341 or ST7735 display.
 | |
| //
 | |
| // This code currently does not "blink" the eye!
 | |
| //
 | |
| // Library used is here:
 | |
| // https://github.com/Bodmer/TFT_eSPI
 | |
| //
 | |
| // To do, maybe, one day:
 | |
| // 1. Get the eye to blink
 | |
| // 2. Add another screen for another eye
 | |
| // 3. Add variable to set how wide open the eye is
 | |
| // 4. Add a reflected highlight to the cornea
 | |
| // 5. Add top eyelid shadow to eye surface
 | |
| // 6. Add aliasing to blur mask edge
 | |
| //
 | |
| // With one lidded eye drawn the code runs at 28-33fps (at 27-40MHz SPI clock)
 | |
| // which is quite reasonable. Operation at an 80MHz SPI clock is possible but
 | |
| // the display may not be able to cope with a clock rate that high and the
 | |
| // performance improvement is small. Operate the ESP8266 at 160MHz for best
 | |
| // frame rate. Note the images are stored in SPI FLASH (PROGMEM) so performance
 | |
| // will be constrained by the increased memory access time.
 | |
| 
 | |
| // Original header for this sketch is below. Note: the technical aspects of the
 | |
| // text no longer apply to this modified version of the sketch:
 | |
| /*
 | |
| //--------------------------------------------------------------------------
 | |
| // Uncanny eyes for PJRC Teensy 3.1 with Adafruit 1.5" OLED (product #1431)
 | |
| // or 1.44" TFT LCD (#2088).  This uses Teensy-3.1-specific features and
 | |
| // WILL NOT work on normal Arduino or other boards!  Use 72 MHz (Optimized)
 | |
| // board speed -- OLED does not work at 96 MHz.
 | |
| //
 | |
| // Adafruit invests time and resources providing this open source code,
 | |
| // please support Adafruit and open-source hardware by purchasing products
 | |
| // from Adafruit!
 | |
| //
 | |
| // Written by Phil Burgess / Paint Your Dragon for Adafruit Industries.
 | |
| // MIT license.  SPI FIFO insight from Paul Stoffregen's ILI9341_t3 library.
 | |
| // Inspired by David Boccabella's (Marcwolf) hybrid servo/OLED eye concept.
 | |
| //--------------------------------------------------------------------------
 | |
| */
 | |
| 
 | |
| #include <SPI.h>
 | |
| #include <TFT_eSPI.h> // Hardware-specific library
 | |
| 
 | |
| // Enable ONE of these #includes for the various eyes:
 | |
| #include "defaultEye.h"        // Standard human-ish hazel eye
 | |
| //#include "noScleraEye.h"       // Large iris, no sclera
 | |
| //#include "dragonEye.h"         // Slit pupil fiery dragon/demon eye
 | |
| //#include "goatEye.h"           // Horizontal pupil goat/Krampus eye
 | |
| 
 | |
| 
 | |
| #define DISPLAY_DC      D3 // Data/command pin for BOTH displays
 | |
| #define DISPLAY_RESET   D4 // Reset pin for BOTH displays
 | |
| #define SELECT_L_PIN    D8 // LEFT eye chip select pin
 | |
| #define SELECT_R_PIN    D8 // RIGHT eye chip select pin
 | |
| 
 | |
| // INPUT CONFIG (for eye motion -- enable or comment out as needed) --------
 | |
| 
 | |
| // The ESP8266 is rather constrained here as it only has one analogue port.
 | |
| // An I2C ADC could be used for more analogue channels
 | |
| //#define JOYSTICK_X_PIN A0 // Analogue pin for eye horiz pos (else auto)
 | |
| //#define JOYSTICK_Y_PIN A0 // Analogue pin for eye vert position (")
 | |
| //#define JOYSTICK_X_FLIP   // If set, reverse stick X axis
 | |
| //#define JOYSTICK_Y_FLIP   // If set, reverse stick Y axis
 | |
| #define TRACKING          // If enabled, eyelid tracks pupil
 | |
| //#define IRIS_PIN       A0 // Photocell or potentiometer (else auto iris)
 | |
| //#define IRIS_PIN_FLIP     // If set, reverse reading from dial/photocell
 | |
| //#define IRIS_SMOOTH       // If enabled, filter input from IRIS_PIN
 | |
| #define IRIS_MIN      140 // Clip lower analogRead() range from IRIS_PIN
 | |
| #define IRIS_MAX      260 // Clip upper "
 | |
| #define WINK_L_PIN      0 // Pin for LEFT eye wink button
 | |
| #define BLINK_PIN       1 // Pin for blink button (BOTH eyes)
 | |
| #define WINK_R_PIN      2 // Pin for RIGHT eye wink button
 | |
| #define AUTOBLINK         // If enabled, eyes blink autonomously
 | |
| 
 | |
| // Probably don't need to edit any config below this line, -----------------
 | |
| // unless building a single-eye project (pendant, etc.), in which case one
 | |
| // of the two elements in the eye[] array further down can be commented out.
 | |
| 
 | |
| // Eye blinks are a tiny 3-state machine.  Per-eye allows winks + blinks.
 | |
| #define NOBLINK 0     // Not currently engaged in a blink
 | |
| #define ENBLINK 1     // Eyelid is currently closing
 | |
| #define DEBLINK 2     // Eyelid is currently opening
 | |
| typedef struct {
 | |
|   int8_t   pin;       // Optional button here for indiv. wink
 | |
|   uint8_t  state;     // NOBLINK/ENBLINK/DEBLINK
 | |
|   int32_t  duration;  // Duration of blink state (micros)
 | |
|   uint32_t startTime; // Time (micros) of last state change
 | |
| } eyeBlink;
 | |
| 
 | |
| struct {
 | |
|   TFT_eSPI tft; // OLED/eye[e].tft object
 | |
|   uint8_t     cs;      // Chip select pin
 | |
|   eyeBlink    blink;   // Current blink state
 | |
| } eye[] = { // OK to comment out one of these for single-eye display:
 | |
|   TFT_eSPI(),SELECT_L_PIN,{WINK_L_PIN,NOBLINK},
 | |
|   //TFT_eSPI(),SELECT_R_PIN,{WINK_R_PIN,NOBLINK},
 | |
| };
 | |
| 
 | |
| #define NUM_EYES (sizeof(eye) / sizeof(eye[0]))
 | |
| 
 | |
| uint32_t fstart = 0;  // start time to improve frame rate calculation at startup
 | |
| 
 | |
| // INITIALIZATION -- runs once at startup ----------------------------------
 | |
| 
 | |
| void setup(void) {
 | |
|   uint8_t e = 0;
 | |
|   
 | |
|   Serial.begin(250000);
 | |
|   randomSeed(analogRead(A0)); // Seed random() from floating analogue input
 | |
| 
 | |
|   eye[e].tft.init();
 | |
|   eye[e].tft.fillScreen(TFT_BLACK);
 | |
|   eye[e].tft.setRotation(0);
 | |
| 
 | |
|   fstart = millis()-1; // Subtract 1 to avoid divide by zero later
 | |
| }
 | |
| 
 | |
| 
 | |
| // EYE-RENDERING FUNCTION --------------------------------------------------
 | |
| #define BUFFER_SIZE 256 // 64 to 512 seems optimum = 30 fps for default eye
 | |
| void drawEye( // Renders one eye.  Inputs must be pre-clipped & valid.
 | |
|   // Use native 32 bit variables where possible as this is 10% faster!
 | |
|   uint8_t  e,       // Eye array index; 0 or 1 for left/right
 | |
|   uint32_t iScale,  // Scale factor for iris
 | |
|   uint32_t  scleraX, // First pixel X offset into sclera image
 | |
|   uint32_t  scleraY, // First pixel Y offset into sclera image
 | |
|   uint32_t  uT,      // Upper eyelid threshold value
 | |
|   uint32_t  lT) {    // Lower eyelid threshold value
 | |
| 
 | |
|   uint32_t  screenX, screenY, scleraXsave;
 | |
|   int32_t  irisX, irisY;
 | |
|   uint32_t p, a;
 | |
|   uint32_t d;
 | |
| 
 | |
|   uint32_t pixels = 0;
 | |
|   uint16_t pbuffer[BUFFER_SIZE]; // This one needs to be 16 bit
 | |
|   
 | |
|   // Set up raw pixel dump to entire screen.  Although such writes can wrap
 | |
|   // around automatically from end of rect back to beginning, the region is
 | |
|   // reset on each frame here in case of an SPI glitch.
 | |
| 
 | |
|   //eye[e].tft.setAddrWindow(319-127, 0, 319, 127);
 | |
|   eye[e].tft.setAddrWindow(0, 0, 128, 128);
 | |
|   
 | |
|   //digitalWrite(eye[e].cs, LOW);                       // Chip select
 | |
| 
 | |
|   // Now just issue raw 16-bit values for every pixel...
 | |
| 
 | |
|   scleraXsave = scleraX; // Save initial X value to reset on each line
 | |
|   irisY       = scleraY - (SCLERA_HEIGHT - IRIS_HEIGHT) / 2;
 | |
|   for(screenY=0; screenY<SCREEN_HEIGHT; screenY++, scleraY++, irisY++) {
 | |
|     scleraX = scleraXsave;
 | |
|     irisX   = scleraXsave - (SCLERA_WIDTH - IRIS_WIDTH) / 2;
 | |
|     for(screenX=0; screenX<SCREEN_WIDTH; screenX++, scleraX++, irisX++) {
 | |
|       if((pgm_read_byte(lower + screenY * SCREEN_WIDTH + screenX) <= lT) ||
 | |
|          (pgm_read_byte(upper + screenY * SCREEN_WIDTH + screenX) <= uT)) {             // Covered by eyelid
 | |
|         p = 0;
 | |
|       } else if((irisY < 0) || (irisY >= IRIS_HEIGHT) ||
 | |
|                 (irisX < 0) || (irisX >= IRIS_WIDTH)) { // In sclera
 | |
|         p = pgm_read_word(sclera + scleraY * SCLERA_WIDTH + scleraX);
 | |
|       } else {                                          // Maybe iris...
 | |
|         p = pgm_read_word(polar + irisY * IRIS_WIDTH + irisX);                        // Polar angle/dist
 | |
|         d = (iScale * (p & 0x7F)) / 128;                // Distance (Y)
 | |
|         if(d < IRIS_MAP_HEIGHT) {                       // Within iris area
 | |
|           a = (IRIS_MAP_WIDTH * (p >> 7)) / 512;        // Angle (X)
 | |
|           p = pgm_read_word(iris + d * IRIS_MAP_WIDTH + a);                               // Pixel = iris
 | |
|         } else {                                        // Not in iris
 | |
|           p = pgm_read_word(sclera + scleraY * SCLERA_WIDTH + scleraX);                 // Pixel = sclera
 | |
|         }
 | |
|       }
 | |
|       *(pbuffer + pixels++) = p>>8 | p<<8;
 | |
| 
 | |
|       if (pixels >= BUFFER_SIZE) { yield(); eye[e].tft.pushColors((uint8_t*)pbuffer, pixels*2); pixels = 0;}
 | |
|     }
 | |
|   }
 | |
| 
 | |
|    if (pixels) { eye[e].tft.pushColors(pbuffer, pixels); pixels = 0;}
 | |
| }
 | |
| 
 | |
| 
 | |
| // EYE ANIMATION -----------------------------------------------------------
 | |
| 
 | |
| const uint8_t ease[] = { // Ease in/out curve for eye movements 3*t^2-2*t^3
 | |
|     0,  0,  0,  0,  0,  0,  0,  1,  1,  1,  1,  1,  2,  2,  2,  3,   // T
 | |
|     3,  3,  4,  4,  4,  5,  5,  6,  6,  7,  7,  8,  9,  9, 10, 10,   // h
 | |
|    11, 12, 12, 13, 14, 15, 15, 16, 17, 18, 18, 19, 20, 21, 22, 23,   // x
 | |
|    24, 25, 26, 27, 27, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39,   // 2
 | |
|    40, 41, 42, 44, 45, 46, 47, 48, 50, 51, 52, 53, 54, 56, 57, 58,   // A
 | |
|    60, 61, 62, 63, 65, 66, 67, 69, 70, 72, 73, 74, 76, 77, 78, 80,   // l
 | |
|    81, 83, 84, 85, 87, 88, 90, 91, 93, 94, 96, 97, 98,100,101,103,   // e
 | |
|   104,106,107,109,110,112,113,115,116,118,119,121,122,124,125,127,   // c
 | |
|   128,130,131,133,134,136,137,139,140,142,143,145,146,148,149,151,   // J
 | |
|   152,154,155,157,158,159,161,162,164,165,167,168,170,171,172,174,   // a
 | |
|   175,177,178,179,181,182,183,185,186,188,189,190,192,193,194,195,   // c
 | |
|   197,198,199,201,202,203,204,205,207,208,209,210,211,213,214,215,   // o
 | |
|   216,217,218,219,220,221,222,224,225,226,227,228,228,229,230,231,   // b
 | |
|   232,233,234,235,236,237,237,238,239,240,240,241,242,243,243,244,   // s
 | |
|   245,245,246,246,247,248,248,249,249,250,250,251,251,251,252,252,   // o
 | |
|   252,253,253,253,254,254,254,254,254,255,255,255,255,255,255,255 }; // n
 | |
| 
 | |
| #ifdef AUTOBLINK
 | |
| uint32_t timeOfLastBlink = 0L, timeToNextBlink = 0L;
 | |
| #endif
 | |
| 
 | |
| void frame( // Process motion for a single frame of left or right eye
 | |
|   uint32_t        iScale) {     // Iris scale (0-1023) passed in
 | |
|   static uint32_t frames   = 0; // Used in frame rate calculation
 | |
|   static uint8_t  eyeIndex = 0; // eye[] array counter
 | |
|   int32_t         eyeX, eyeY;
 | |
|   uint32_t        t = micros(); // Time at start of function
 | |
| 
 | |
|   Serial.print((++frames * 1000) / (millis() - fstart)); Serial.println("fps");// Show frame rate
 | |
| 
 | |
|   if(++eyeIndex >= NUM_EYES) eyeIndex = 0; // Cycle through eyes, 1 per call
 | |
| 
 | |
|  // Autonomous X/Y eye motion
 | |
|       // Periodically initiates motion to a new random point, random speed,
 | |
|       // holds there for random period until next motion.
 | |
| 
 | |
|   static bool  eyeInMotion      = false;
 | |
|   static int32_t  eyeOldX=512, eyeOldY=512, eyeNewX=512, eyeNewY=512;
 | |
|   static uint32_t eyeMoveStartTime = 0L;
 | |
|   static int32_t  eyeMoveDuration  = 0L;
 | |
| 
 | |
|   int32_t dt = t - eyeMoveStartTime;      // uS elapsed since last eye event
 | |
|   if(eyeInMotion) {                       // Currently moving?
 | |
|     if(dt >= eyeMoveDuration) {           // Time up?  Destination reached.
 | |
|       eyeInMotion      = false;           // Stop moving
 | |
|       eyeMoveDuration  = random(3000000L); // 0-3 sec stop
 | |
|       eyeMoveStartTime = t;               // Save initial time of stop
 | |
|       eyeX = eyeOldX = eyeNewX;           // Save position
 | |
|       eyeY = eyeOldY = eyeNewY;
 | |
|     } else { // Move time's not yet fully elapsed -- interpolate position
 | |
|       int16_t e = ease[255 * dt / eyeMoveDuration] + 1;   // Ease curve
 | |
|       eyeX = eyeOldX + (((eyeNewX - eyeOldX) * e) / 256); // Interp X
 | |
|       eyeY = eyeOldY + (((eyeNewY - eyeOldY) * e) / 256); // and Y
 | |
|     }
 | |
|   } else {                                // Eye stopped
 | |
|     eyeX = eyeOldX;
 | |
|     eyeY = eyeOldY;
 | |
|     if(dt > eyeMoveDuration) {            // Time up?  Begin new move.
 | |
|       int16_t  dx, dy;
 | |
|       uint32_t d;
 | |
|       do {                                // Pick new dest in circle
 | |
|         eyeNewX = random(1024);
 | |
|         eyeNewY = random(1024);
 | |
|         dx      = (eyeNewX * 2) - 1023;
 | |
|         dy      = (eyeNewY * 2) - 1023;
 | |
|       } while((d = (dx * dx + dy * dy)) > (1023 * 1023)); // Keep trying
 | |
|       eyeMoveDuration  = random(50000, 150000);//random(72000, 144000); // ~1/14 - ~1/7 sec
 | |
|       eyeMoveStartTime = t;               // Save initial time of move
 | |
|       eyeInMotion      = true;            // Start move on next frame
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Blinking
 | |
| /*
 | |
| #ifdef AUTOBLINK
 | |
|   // Similar to the autonomous eye movement above -- blink start times
 | |
|   // and durations are random (within ranges).
 | |
|   if((t - timeOfLastBlink) >= timeToNextBlink) { // Start new blink?
 | |
|     timeOfLastBlink = t;
 | |
|     uint32_t blinkDuration = random(36000, 72000); // ~1/28 - ~1/14 sec
 | |
|     // Set up durations for both eyes (if not already winking)
 | |
|     for(uint8_t e=0; e<NUM_EYES; e++) {
 | |
|       if(eye[e].blink.state == NOBLINK) {
 | |
|         eye[e].blink.state     = ENBLINK;
 | |
|         eye[e].blink.startTime = t;
 | |
|         eye[e].blink.duration  = blinkDuration;
 | |
|       }
 | |
|     }
 | |
|     timeToNextBlink = blinkDuration * 3 + random(4000000);
 | |
|   }
 | |
| #endif
 | |
| */
 | |
| /*
 | |
|   if(eye[eyeIndex].blink.state) { // Eye currently blinking?
 | |
|     // Check if current blink state time has elapsed
 | |
|     if((t - eye[eyeIndex].blink.startTime) >= eye[eyeIndex].blink.duration) {
 | |
|       // Yes -- increment blink state, unless...
 | |
|       if((eye[eyeIndex].blink.state == ENBLINK) &&  // Enblinking and...
 | |
|         ((digitalRead(BLINK_PIN) == LOW) ||         // blink or wink held...
 | |
|           digitalRead(eye[eyeIndex].blink.pin) == LOW)) {
 | |
|         // Don't advance state yet -- eye is held closed instead
 | |
|       } else { // No buttons, or other state...
 | |
|         if(++eye[eyeIndex].blink.state > DEBLINK) { // Deblinking finished?
 | |
|           eye[eyeIndex].blink.state = NOBLINK;      // No longer blinking
 | |
|         } else { // Advancing from ENBLINK to DEBLINK mode
 | |
|           eye[eyeIndex].blink.duration *= 2; // DEBLINK is 1/2 ENBLINK speed
 | |
|           eye[eyeIndex].blink.startTime = t;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   } else { // Not currently blinking...check buttons!
 | |
|     if(digitalRead(BLINK_PIN) == LOW) {
 | |
|       // Manually-initiated blinks have random durations like auto-blink
 | |
|       uint32_t blinkDuration = random(36000, 72000);
 | |
|       for(uint8_t e=0; e<NUM_EYES; e++) {
 | |
|         if(eye[e].blink.state == NOBLINK) {
 | |
|           eye[e].blink.state     = ENBLINK;
 | |
|           eye[e].blink.startTime = t;
 | |
|           eye[e].blink.duration  = blinkDuration;
 | |
|         }
 | |
|       }
 | |
|     } else if(digitalRead(eye[eyeIndex].blink.pin) == LOW) { // Wink!
 | |
|       eye[eyeIndex].blink.state     = ENBLINK;
 | |
|       eye[eyeIndex].blink.startTime = t;
 | |
|       eye[eyeIndex].blink.duration  = random(45000, 90000);
 | |
|     }
 | |
|   }
 | |
| */
 | |
|   // Process motion, blinking and iris scale into renderable values
 | |
| 
 | |
|   // Iris scaling: remap from 0-1023 input to iris map height pixel units
 | |
|   iScale = ((IRIS_MAP_HEIGHT + 1) * 1024) /
 | |
|            (1024 - (iScale * (IRIS_MAP_HEIGHT - 1) / IRIS_MAP_HEIGHT));
 | |
| 
 | |
|   // Scale eye X/Y positions (0-1023) to pixel units used by drawEye()
 | |
|   eyeX = map(eyeX, 0, 1023, 0, SCLERA_WIDTH  - 128);
 | |
|   eyeY = map(eyeY, 0, 1023, 0, SCLERA_HEIGHT - 128);
 | |
|   if(eyeIndex == 1) eyeX = (SCLERA_WIDTH - 128) - eyeX; // Mirrored display
 | |
| 
 | |
|   // Horizontal position is offset so that eyes are very slightly crossed
 | |
|   // to appear fixated (converged) at a conversational distance.  Number
 | |
|   // here was extracted from my posterior and not mathematically based.
 | |
|   // I suppose one could get all clever with a range sensor, but for now...
 | |
|   eyeX += 4;
 | |
|   if(eyeX > (SCLERA_WIDTH - 128)) eyeX = (SCLERA_WIDTH - 128);
 | |
| 
 | |
|   // Eyelids are rendered using a brightness threshold image.  This same
 | |
|   // map can be used to simplify another problem: making the upper eyelid
 | |
|   // track the pupil (eyes tend to open only as much as needed -- e.g. look
 | |
|   // down and the upper eyelid drops).  Just sample a point in the upper
 | |
|   // lid map slightly above the pupil to determine the rendering threshold.
 | |
|   static uint8_t uThreshold = 128;
 | |
|   uint8_t        lThreshold, n;
 | |
| 
 | |
| #ifdef TRACKING
 | |
|   int16_t sampleX = SCLERA_WIDTH  / 2 - (eyeX / 2), // Reduce X influence
 | |
|           sampleY = SCLERA_HEIGHT / 2 - (eyeY + IRIS_HEIGHT / 4);
 | |
|   // Eyelid is slightly asymmetrical, so two readings are taken, averaged
 | |
|   if(sampleY < 0) n = 0;
 | |
|   else            n = (pgm_read_byte(upper + sampleY * SCREEN_WIDTH + sampleX) +
 | |
|                        pgm_read_byte(upper + sampleY * SCREEN_WIDTH + (SCREEN_WIDTH - 1 - sampleX))) / 2;
 | |
|   uThreshold = (uThreshold * 3 + n) / 4; // Filter/soften motion
 | |
|   // Lower eyelid doesn't track the same way, but seems to be pulled upward
 | |
|   // by tension from the upper lid.
 | |
|   lThreshold = 254 - uThreshold;
 | |
| #else // No tracking -- eyelids full open unless blink modifies them
 | |
|   uThreshold = lThreshold = 0;
 | |
| #endif
 | |
| 
 | |
|   // The upper/lower thresholds are then scaled relative to the current
 | |
|   // blink position so that blinks work together with pupil tracking.
 | |
|   if(eye[eyeIndex].blink.state) { // Eye currently blinking?
 | |
|     uint32_t s = (t - eye[eyeIndex].blink.startTime);
 | |
|     if(s >= eye[eyeIndex].blink.duration) s = 255;   // At or past blink end
 | |
|     else s = 255 * s / eye[eyeIndex].blink.duration; // Mid-blink
 | |
|     s          = (eye[eyeIndex].blink.state == DEBLINK) ? 1 + s : 256 - s;
 | |
|     n          = (uThreshold * s + 254 * (257 - s)) / 256;
 | |
|     lThreshold = (lThreshold * s + 254 * (257 - s)) / 256;
 | |
|   } else {
 | |
|     n          = uThreshold;
 | |
|   }
 | |
| 
 | |
|   // Pass all the derived values to the eye-rendering function:
 | |
|   drawEye(eyeIndex, iScale, eyeX, eyeY, n, lThreshold);
 | |
| 
 | |
| }
 | |
| 
 | |
| 
 | |
| // AUTONOMOUS IRIS SCALING (if no photocell or dial) -----------------------
 | |
| 
 | |
| #if !defined(IRIS_PIN) || (IRIS_PIN < 0)
 | |
| 
 | |
| // Autonomous iris motion uses a fractal behavior to similate both the major
 | |
| // reaction of the eye plus the continuous smaller adjustments that occur.
 | |
| 
 | |
| uint16_t oldIris = (IRIS_MIN + IRIS_MAX) / 2, newIris;
 | |
| 
 | |
| void split( // Subdivides motion path into two sub-paths w/randimization
 | |
|   int16_t  startValue, // Iris scale value (IRIS_MIN to IRIS_MAX) at start
 | |
|   int16_t  endValue,   // Iris scale value at end
 | |
|   uint32_t startTime,  // micros() at start
 | |
|   int32_t  duration,   // Start-to-end time, in microseconds
 | |
|   int16_t  range) {    // Allowable scale value variance when subdividing
 | |
| 
 | |
|   if(range >= 8) {     // Limit subdvision count, because recursion
 | |
|     range    /= 2;     // Split range & time in half for subdivision,
 | |
|     duration /= 2;     // then pick random center point within range:
 | |
|     int16_t  midValue = (startValue + endValue - range) / 2 + random(range);
 | |
|     uint32_t midTime  = startTime + duration;
 | |
|     split(startValue, midValue, startTime, duration, range); // First half
 | |
|     split(midValue  , endValue, midTime  , duration, range); // Second half
 | |
|   } else {             // No more subdivisons, do iris motion...
 | |
|     int32_t dt;        // Time (micros) since start of motion
 | |
|     int16_t v;         // Interim value
 | |
|     while((dt = (micros() - startTime)) < duration) {
 | |
|       v = startValue + (((endValue - startValue) * dt) / duration);
 | |
|       if(v < IRIS_MIN)      v = IRIS_MIN; // Clip just in case
 | |
|       else if(v > IRIS_MAX) v = IRIS_MAX;
 | |
|       frame(v);        // Draw frame w/interim iris scale value
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| #endif // !IRIS_PIN
 | |
| 
 | |
| 
 | |
| // MAIN LOOP -- runs continuously after setup() ----------------------------
 | |
| 
 | |
| void loop() {
 | |
| 
 | |
| #if defined(IRIS_PIN) && (IRIS_PIN >= 0) // Interactive iris
 | |
| 
 | |
|   uint16_t v = 512; //analogRead(IRIS_PIN);       // Raw dial/photocell reading
 | |
| #ifdef IRIS_PIN_FLIP
 | |
|   v = 1023 - v;
 | |
| #endif
 | |
|   v = map(v, 0, 1023, IRIS_MIN, IRIS_MAX); // Scale to iris range
 | |
| #ifdef IRIS_SMOOTH // Filter input (gradual motion)
 | |
|   static uint16_t irisValue = (IRIS_MIN + IRIS_MAX) / 2;
 | |
|   irisValue = ((irisValue * 15) + v) / 16;
 | |
|   frame(irisValue);
 | |
| #else // Unfiltered (immediate motion)
 | |
|   frame(v);
 | |
| #endif // IRIS_SMOOTH
 | |
| 
 | |
| #else  // Autonomous iris scaling -- invoke recursive function
 | |
| 
 | |
|   newIris = random(IRIS_MIN, IRIS_MAX);
 | |
|   split(oldIris, newIris, micros(), 10000000L, IRIS_MAX - IRIS_MIN);
 | |
|   oldIris = newIris;
 | |
| 
 | |
| #endif // IRIS_PIN
 | |
| 
 | |
| //screenshotToConsole();
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 |