TFT_eSPI/examples/DMA test/Flash_Jpg_DMA/Flash_Jpg_DMA.ino

112 lines
4.0 KiB
C++

// Example for library:
// https://github.com/Bodmer/TJpg_Decoder
// This example renders a Jpeg file that is stored in an array within Flash (program) memory
// see panda.h tab. The panda image file being ~13Kbytes.
#define USE_DMA
// Include the array
#include "panda.h"
// Include the jpeg decoder library
#include <TJpg_Decoder.h>
#ifdef USE_DMA
uint16_t dmaBuffer1[16*16]; // Toggle buffer for 16*16 MCU block, 512bytes
uint16_t dmaBuffer2[16*16]; // Toggle buffer for 16*16 MCU block, 512bytes
uint16_t* dmaBufferPtr = dmaBuffer1;
bool dmaBufferSel = 0;
#endif
// Include the TFT library https://github.com/Bodmer/TFT_eSPI
#include "SPI.h"
#include <TFT_eSPI.h> // Hardware-specific library
TFT_eSPI tft = TFT_eSPI(); // Invoke custom library
// This next function will be called during decoding of the jpeg file to render each
// 16x16 or 8x8 image tile (Minimum Coding Unit) to the TFT.
bool tft_output(int16_t x, int16_t y, uint16_t w, uint16_t h, uint16_t* bitmap)
{
// Stop further decoding as image is running off bottom of screen
if ( y >= tft.height() ) return 0;
// STM32F767 processor takes 43ms just to decode (and not draw) jpeg (-Os compile option)
// Total time to decode and also draw to TFT:
// SPI 54MHz=71ms, with DMA 50ms, 71-43 = 28ms spent drawing, so DMA is complete before next MCU block is ready
// Apparent performance benefit of DMA = 71/50 = 42%, 50 - 43 = 7ms lost elsewhere
// SPI 27MHz=95ms, with DMA 52ms. 95-43 = 52ms spent drawing, so DMA is *just* complete before next MCU block is ready!
// Apparent performance benefit of DMA = 95/52 = 83%, 52 - 43 = 9ms lost elsewhere
#ifdef USE_DMA
// Double buffering is used, the bitmap is copied to the buffer by pushImageDMA() the
// bitmap can then be updated by the jpeg decoder while DMA is in progress
if (dmaBufferSel) dmaBufferPtr = dmaBuffer2;
else dmaBufferPtr = dmaBuffer1;
dmaBufferSel != dmaBufferSel; // Toggle buffer selection
// pushImageDMA() will clip the image block at screen boundaries before initiating DMA
tft.pushImageDMA(x, y, w, h, bitmap, dmaBufferPtr); // Initiate DMA - blocking only if last DMA is not complete
// The DMA transfer of image block to the TFT is now in progress...
#else
// Non-DMA blocking alternative
tft.pushImage(x, y, w, h, bitmap); // Blocking, so only returns when image block is drawn
#endif
// Return 1 to decode next block.
return 1;
}
void setup()
{
Serial.begin(115200);
Serial.println("\n\n Testing TJpg_Decoder library");
// Initialise the TFT
tft.begin();
tft.setTextColor(TFT_WHITE, TFT_BLACK);
tft.fillScreen(TFT_BLACK);
#ifdef USE_DMA
tft.initDMA(); // To use SPI DMA you must call initDMA() to setup the DMA engine
#endif
// The jpeg image can be scaled down by a factor of 1, 2, 4, or 8
TJpgDec.setJpgScale(1);
// The colour byte order can be swapped by the decoder
// using TJpgDec.setSwapBytes(true); or by the TFT_eSPI library:
tft.setSwapBytes(true);
// The decoder must be given the exact name of the rendering function above
TJpgDec.setCallback(tft_output);
}
void loop()
{
// Show a contrasting colour for demo of draw speed
tft.fillScreen(TFT_RED);
// Get the width and height in pixels of the jpeg if you wish:
uint16_t w = 0, h = 0;
TJpgDec.getJpgSize(&w, &h, panda, sizeof(panda));
Serial.print("Width = "); Serial.print(w); Serial.print(", height = "); Serial.println(h);
// Time recorded for test purposes
uint32_t dt = millis();
// Must use startWrite first so TFT chip select stays low during DMA and SPI channel settings remain configured
tft.startWrite();
// Draw the image, top left at 0,0 - DMA request is handled in the call-back tft_output() in this sketch
TJpgDec.drawJpg(0, 0, panda, sizeof(panda));
// Must use endWrite to release the TFT chip select and release the SPI channel
tft.endWrite();
// How much time did rendering take (ESP8266 80MHz 262ms, 160MHz 149ms, ESP32 SPI 111ms, 8bit parallel 90ms
dt = millis() - dt;
Serial.print(dt); Serial.println(" ms");
// Wait before drawing again
delay(2000);
}