430 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			430 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C++
		
	
	
	
| //
 | |
| // Code adapted by Bodmer as an example for TFT_eSPI, this runs on any
 | |
| // TFT_eSPI compatible processor so ignore the technical limitations
 | |
| // detailed in the original header below. Assorted changes have been
 | |
| // made including removal of the display mirror kludge.
 | |
| 
 | |
| //--------------------------------------------------------------------------
 | |
| // Uncanny eyes for Adafruit 1.5" OLED (product #1431) or 1.44" TFT LCD
 | |
| // (#2088).  Works on PJRC Teensy 3.x and on Adafruit M0 and M4 boards
 | |
| // (Feather, Metro, etc.).  This code uses features specific to these
 | |
| // boards and WILL NOT work on normal Arduino or other boards!
 | |
| //
 | |
| // SEE FILE "config.h" FOR MOST CONFIGURATION (graphics, pins, display type,
 | |
| // etc).  Probably won't need to edit THIS file unless you're doing some
 | |
| // extremely custom modifications.
 | |
| //
 | |
| // Adafruit invests time and resources providing this open source code,
 | |
| // please support Adafruit and open-source hardware by purchasing products
 | |
| // from Adafruit!
 | |
| //
 | |
| // Written by Phil Burgess / Paint Your Dragon for Adafruit Industries.
 | |
| // MIT license.  SPI FIFO insight from Paul Stoffregen's ILI9341_t3 library.
 | |
| // Inspired by David Boccabella's (Marcwolf) hybrid servo/OLED eye concept.
 | |
| //--------------------------------------------------------------------------
 | |
| 
 | |
| #if !defined(LIGHT_PIN) || (LIGHT_PIN < 0)
 | |
| // Autonomous iris motion uses a fractal behavior to similate both the major
 | |
| // reaction of the eye plus the continuous smaller adjustments that occur.
 | |
| uint16_t oldIris = (IRIS_MIN + IRIS_MAX) / 2, newIris;
 | |
| #endif
 | |
| 
 | |
| // Initialise eyes ---------------------------------------------------------
 | |
| void initEyes(void)
 | |
| {
 | |
|   Serial.println("Initialise eye objects");
 | |
| 
 | |
|   // Initialise eye objects based on eyeInfo list in config.h:
 | |
|   for (uint8_t e = 0; e < NUM_EYES; e++) {
 | |
|     Serial.print("Create display #"); Serial.println(e);
 | |
| 
 | |
|     eye[e].tft_cs      = eyeInfo[e].select;
 | |
|     eye[e].blink.state = NOBLINK;
 | |
|     eye[e].xposition   = eyeInfo[e].xposition;
 | |
| 
 | |
|     pinMode(eye[e].tft_cs, OUTPUT);
 | |
|     digitalWrite(eye[e].tft_cs, LOW);
 | |
| 
 | |
|     // Also set up an individual eye-wink pin if defined:
 | |
|     if (eyeInfo[e].wink >= 0) pinMode(eyeInfo[e].wink, INPUT_PULLUP);
 | |
|   }
 | |
| 
 | |
| #if defined(BLINK_PIN) && (BLINK_PIN >= 0)
 | |
|   pinMode(BLINK_PIN, INPUT_PULLUP); // Ditto for all-eyes blink pin
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // UPDATE EYE --------------------------------------------------------------
 | |
| void updateEye (void)
 | |
| {
 | |
| #if defined(LIGHT_PIN) && (LIGHT_PIN >= 0) // Interactive iris
 | |
| 
 | |
|   int16_t v = analogRead(LIGHT_PIN);       // Raw dial/photocell reading
 | |
| #ifdef LIGHT_PIN_FLIP
 | |
|   v = 1023 - v;                            // Reverse reading from sensor
 | |
| #endif
 | |
|   if (v < LIGHT_MIN)      v = LIGHT_MIN; // Clamp light sensor range
 | |
|   else if (v > LIGHT_MAX) v = LIGHT_MAX;
 | |
|   v -= LIGHT_MIN;  // 0 to (LIGHT_MAX - LIGHT_MIN)
 | |
| #ifdef LIGHT_CURVE  // Apply gamma curve to sensor input?
 | |
|   v = (int16_t)(pow((double)v / (double)(LIGHT_MAX - LIGHT_MIN),
 | |
|                     LIGHT_CURVE) * (double)(LIGHT_MAX - LIGHT_MIN));
 | |
| #endif
 | |
|   // And scale to iris range (IRIS_MAX is size at LIGHT_MIN)
 | |
|   v = map(v, 0, (LIGHT_MAX - LIGHT_MIN), IRIS_MAX, IRIS_MIN);
 | |
| #ifdef IRIS_SMOOTH // Filter input (gradual motion)
 | |
|   static int16_t irisValue = (IRIS_MIN + IRIS_MAX) / 2;
 | |
|   irisValue = ((irisValue * 15) + v) / 16;
 | |
|   frame(irisValue);
 | |
| #else // Unfiltered (immediate motion)
 | |
|   frame(v);
 | |
| #endif // IRIS_SMOOTH
 | |
| 
 | |
| #else  // Autonomous iris scaling -- invoke recursive function
 | |
| 
 | |
|   newIris = random(IRIS_MIN, IRIS_MAX);
 | |
|   split(oldIris, newIris, micros(), 10000000L, IRIS_MAX - IRIS_MIN);
 | |
|   oldIris = newIris;
 | |
| 
 | |
| #endif // LIGHT_PIN
 | |
| }
 | |
| 
 | |
| // EYE-RENDERING FUNCTION --------------------------------------------------
 | |
| void drawEye( // Renders one eye.  Inputs must be pre-clipped & valid.
 | |
|   // Use native 32 bit variables where possible as this is 10% faster!
 | |
|   uint8_t  e,       // Eye array index; 0 or 1 for left/right
 | |
|   uint32_t iScale,  // Scale factor for iris
 | |
|   uint32_t  scleraX, // First pixel X offset into sclera image
 | |
|   uint32_t  scleraY, // First pixel Y offset into sclera image
 | |
|   uint32_t  uT,      // Upper eyelid threshold value
 | |
|   uint32_t  lT) {    // Lower eyelid threshold value
 | |
| 
 | |
|   uint32_t  screenX, screenY, scleraXsave;
 | |
|   int32_t  irisX, irisY;
 | |
|   uint32_t p, a;
 | |
|   uint32_t d;
 | |
| 
 | |
|   uint32_t pixels = 0;
 | |
| 
 | |
|   // Set up raw pixel dump to entire screen.  Although such writes can wrap
 | |
|   // around automatically from end of rect back to beginning, the region is
 | |
|   // reset on each frame here in case of an SPI glitch.
 | |
|   digitalWrite(eye[e].tft_cs, LOW);
 | |
|   tft.startWrite();
 | |
|   tft.setAddrWindow(eye[e].xposition, 0, 128, 128);
 | |
| 
 | |
|   // Now just issue raw 16-bit values for every pixel...
 | |
| 
 | |
|   scleraXsave = scleraX; // Save initial X value to reset on each line
 | |
|   irisY       = scleraY - (SCLERA_HEIGHT - IRIS_HEIGHT) / 2;
 | |
| 
 | |
|   // Eyelid image is left<>right swapped for two displays
 | |
|   uint16_t lidX = 0;
 | |
|   uint16_t dlidX = -1;
 | |
|   if (e) dlidX = 1;
 | |
|   for (screenY = 0; screenY < SCREEN_HEIGHT; screenY++, scleraY++, irisY++) {
 | |
|     scleraX = scleraXsave;
 | |
|     irisX   = scleraXsave - (SCLERA_WIDTH - IRIS_WIDTH) / 2;
 | |
|     if (e) lidX = 0; else lidX = SCREEN_WIDTH - 1;
 | |
|     for (screenX = 0; screenX < SCREEN_WIDTH; screenX++, scleraX++, irisX++, lidX += dlidX) {
 | |
|       if ((pgm_read_byte(lower + screenY * SCREEN_WIDTH + lidX) <= lT) ||
 | |
|           (pgm_read_byte(upper + screenY * SCREEN_WIDTH + lidX) <= uT)) {              // Covered by eyelid
 | |
|         p = 0;
 | |
|       } else if ((irisY < 0) || (irisY >= IRIS_HEIGHT) ||
 | |
|                  (irisX < 0) || (irisX >= IRIS_WIDTH)) { // In sclera
 | |
|         p = pgm_read_word(sclera + scleraY * SCLERA_WIDTH + scleraX);
 | |
|       } else {                                          // Maybe iris...
 | |
|         p = pgm_read_word(polar + irisY * IRIS_WIDTH + irisX);                        // Polar angle/dist
 | |
|         d = (iScale * (p & 0x7F)) / 128;                // Distance (Y)
 | |
|         if (d < IRIS_MAP_HEIGHT) {                      // Within iris area
 | |
|           a = (IRIS_MAP_WIDTH * (p >> 7)) / 512;        // Angle (X)
 | |
|           p = pgm_read_word(iris + d * IRIS_MAP_WIDTH + a);                           // Pixel = iris
 | |
|         } else {                                        // Not in iris
 | |
|           p = pgm_read_word(sclera + scleraY * SCLERA_WIDTH + scleraX);               // Pixel = sclera
 | |
|         }
 | |
|       }
 | |
|       *(&pbuffer[dmaBuf][0] + pixels++) = p >> 8 | p << 8;
 | |
| 
 | |
|       if (pixels >= BUFFER_SIZE) {
 | |
|         yield();
 | |
| #ifdef USE_DMA
 | |
|         tft.pushPixelsDMA(&pbuffer[dmaBuf][0], pixels);
 | |
|         dmaBuf  = !dmaBuf;
 | |
| #else
 | |
|         tft.pushPixels(pbuffer, pixels);
 | |
| #endif
 | |
|         pixels = 0;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (pixels) {
 | |
| #ifdef USE_DMA
 | |
|     tft.pushPixelsDMA(&pbuffer[dmaBuf][0], pixels);
 | |
| #else
 | |
|     tft.pushPixels(pbuffer, pixels);
 | |
| #endif
 | |
|   }
 | |
|   tft.endWrite();
 | |
|   digitalWrite(eye[e].tft_cs, HIGH);
 | |
| }
 | |
| 
 | |
| // EYE ANIMATION -----------------------------------------------------------
 | |
| 
 | |
| const uint8_t ease[] = { // Ease in/out curve for eye movements 3*t^2-2*t^3
 | |
|   0,  0,  0,  0,  0,  0,  0,  1,  1,  1,  1,  1,  2,  2,  2,  3,   // T
 | |
|   3,  3,  4,  4,  4,  5,  5,  6,  6,  7,  7,  8,  9,  9, 10, 10,   // h
 | |
|   11, 12, 12, 13, 14, 15, 15, 16, 17, 18, 18, 19, 20, 21, 22, 23,   // x
 | |
|   24, 25, 26, 27, 27, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39,   // 2
 | |
|   40, 41, 42, 44, 45, 46, 47, 48, 50, 51, 52, 53, 54, 56, 57, 58,   // A
 | |
|   60, 61, 62, 63, 65, 66, 67, 69, 70, 72, 73, 74, 76, 77, 78, 80,   // l
 | |
|   81, 83, 84, 85, 87, 88, 90, 91, 93, 94, 96, 97, 98, 100, 101, 103, // e
 | |
|   104, 106, 107, 109, 110, 112, 113, 115, 116, 118, 119, 121, 122, 124, 125, 127, // c
 | |
|   128, 130, 131, 133, 134, 136, 137, 139, 140, 142, 143, 145, 146, 148, 149, 151, // J
 | |
|   152, 154, 155, 157, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 172, 174, // a
 | |
|   175, 177, 178, 179, 181, 182, 183, 185, 186, 188, 189, 190, 192, 193, 194, 195, // c
 | |
|   197, 198, 199, 201, 202, 203, 204, 205, 207, 208, 209, 210, 211, 213, 214, 215, // o
 | |
|   216, 217, 218, 219, 220, 221, 222, 224, 225, 226, 227, 228, 228, 229, 230, 231, // b
 | |
|   232, 233, 234, 235, 236, 237, 237, 238, 239, 240, 240, 241, 242, 243, 243, 244, // s
 | |
|   245, 245, 246, 246, 247, 248, 248, 249, 249, 250, 250, 251, 251, 251, 252, 252, // o
 | |
|   252, 253, 253, 253, 254, 254, 254, 254, 254, 255, 255, 255, 255, 255, 255, 255
 | |
| }; // n
 | |
| 
 | |
| #ifdef AUTOBLINK
 | |
| uint32_t timeOfLastBlink = 0L, timeToNextBlink = 0L;
 | |
| #endif
 | |
| 
 | |
| // Process motion for a single frame of left or right eye
 | |
| void frame(uint16_t iScale) // Iris scale (0-1023)
 | |
| {
 | |
|   static uint32_t frames   = 0; // Used in frame rate calculation
 | |
|   static uint8_t  eyeIndex = 0; // eye[] array counter
 | |
|   int16_t         eyeX, eyeY;
 | |
|   uint32_t        t = micros(); // Time at start of function
 | |
| 
 | |
|   if (!(++frames & 255)) { // Every 256 frames...
 | |
|     float elapsed = (millis() - startTime) / 1000.0;
 | |
|     if (elapsed) Serial.println((uint16_t)(frames / elapsed)); // Print FPS
 | |
|   }
 | |
| 
 | |
|   if (++eyeIndex >= NUM_EYES) eyeIndex = 0; // Cycle through eyes, 1 per call
 | |
| 
 | |
|   // X/Y movement
 | |
| 
 | |
| #if defined(JOYSTICK_X_PIN) && (JOYSTICK_X_PIN >= 0) && \
 | |
|     defined(JOYSTICK_Y_PIN) && (JOYSTICK_Y_PIN >= 0)
 | |
| 
 | |
|   // Read X/Y from joystick, constrain to circle
 | |
|   int16_t dx, dy;
 | |
|   int32_t d;
 | |
|   eyeX = analogRead(JOYSTICK_X_PIN); // Raw (unclipped) X/Y reading
 | |
|   eyeY = analogRead(JOYSTICK_Y_PIN);
 | |
| #ifdef JOYSTICK_X_FLIP
 | |
|   eyeX = 1023 - eyeX;
 | |
| #endif
 | |
| #ifdef JOYSTICK_Y_FLIP
 | |
|   eyeY = 1023 - eyeY;
 | |
| #endif
 | |
|   dx = (eyeX * 2) - 1023; // A/D exact center is at 511.5.  Scale coords
 | |
|   dy = (eyeY * 2) - 1023; // X2 so range is -1023 to +1023 w/center at 0.
 | |
|   if ((d = (dx * dx + dy * dy)) > (1023 * 1023)) { // Outside circle
 | |
|     d    = (int32_t)sqrt((float)d);               // Distance from center
 | |
|     eyeX = ((dx * 1023 / d) + 1023) / 2;          // Clip to circle edge,
 | |
|     eyeY = ((dy * 1023 / d) + 1023) / 2;          // scale back to 0-1023
 | |
|   }
 | |
| 
 | |
| #else // Autonomous X/Y eye motion
 | |
|   // Periodically initiates motion to a new random point, random speed,
 | |
|   // holds there for random period until next motion.
 | |
| 
 | |
|   static bool  eyeInMotion      = false;
 | |
|   static int16_t  eyeOldX = 512, eyeOldY = 512, eyeNewX = 512, eyeNewY = 512;
 | |
|   static uint32_t eyeMoveStartTime = 0L;
 | |
|   static int32_t  eyeMoveDuration  = 0L;
 | |
| 
 | |
|   int32_t dt = t - eyeMoveStartTime;      // uS elapsed since last eye event
 | |
|   if (eyeInMotion) {                      // Currently moving?
 | |
|     if (dt >= eyeMoveDuration) {          // Time up?  Destination reached.
 | |
|       eyeInMotion      = false;           // Stop moving
 | |
|       eyeMoveDuration  = random(3000000); // 0-3 sec stop
 | |
|       eyeMoveStartTime = t;               // Save initial time of stop
 | |
|       eyeX = eyeOldX = eyeNewX;           // Save position
 | |
|       eyeY = eyeOldY = eyeNewY;
 | |
|     } else { // Move time's not yet fully elapsed -- interpolate position
 | |
|       int16_t e = ease[255 * dt / eyeMoveDuration] + 1;   // Ease curve
 | |
|       eyeX = eyeOldX + (((eyeNewX - eyeOldX) * e) / 256); // Interp X
 | |
|       eyeY = eyeOldY + (((eyeNewY - eyeOldY) * e) / 256); // and Y
 | |
|     }
 | |
|   } else {                                // Eye stopped
 | |
|     eyeX = eyeOldX;
 | |
|     eyeY = eyeOldY;
 | |
|     if (dt > eyeMoveDuration) {           // Time up?  Begin new move.
 | |
|       int16_t  dx, dy;
 | |
|       uint32_t d;
 | |
|       do {                                // Pick new dest in circle
 | |
|         eyeNewX = random(1024);
 | |
|         eyeNewY = random(1024);
 | |
|         dx      = (eyeNewX * 2) - 1023;
 | |
|         dy      = (eyeNewY * 2) - 1023;
 | |
|       } while ((d = (dx * dx + dy * dy)) > (1023 * 1023)); // Keep trying
 | |
|       eyeMoveDuration  = random(72000, 144000); // ~1/14 - ~1/7 sec
 | |
|       eyeMoveStartTime = t;               // Save initial time of move
 | |
|       eyeInMotion      = true;            // Start move on next frame
 | |
|     }
 | |
|   }
 | |
| #endif // JOYSTICK_X_PIN etc.
 | |
| 
 | |
|   // Blinking
 | |
| #ifdef AUTOBLINK
 | |
|   // Similar to the autonomous eye movement above -- blink start times
 | |
|   // and durations are random (within ranges).
 | |
|   if ((t - timeOfLastBlink) >= timeToNextBlink) { // Start new blink?
 | |
|     timeOfLastBlink = t;
 | |
|     uint32_t blinkDuration = random(36000, 72000); // ~1/28 - ~1/14 sec
 | |
|     // Set up durations for both eyes (if not already winking)
 | |
|     for (uint8_t e = 0; e < NUM_EYES; e++) {
 | |
|       if (eye[e].blink.state == NOBLINK) {
 | |
|         eye[e].blink.state     = ENBLINK;
 | |
|         eye[e].blink.startTime = t;
 | |
|         eye[e].blink.duration  = blinkDuration;
 | |
|       }
 | |
|     }
 | |
|     timeToNextBlink = blinkDuration * 3 + random(4000000);
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   if (eye[eyeIndex].blink.state) { // Eye currently blinking?
 | |
|     // Check if current blink state time has elapsed
 | |
|     if ((t - eye[eyeIndex].blink.startTime) >= eye[eyeIndex].blink.duration) {
 | |
|       // Yes -- increment blink state, unless...
 | |
|       if ((eye[eyeIndex].blink.state == ENBLINK) && ( // Enblinking and...
 | |
| #if defined(BLINK_PIN) && (BLINK_PIN >= 0)
 | |
|             (digitalRead(BLINK_PIN) == LOW) ||           // blink or wink held...
 | |
| #endif
 | |
|             ((eyeInfo[eyeIndex].wink >= 0) &&
 | |
|              digitalRead(eyeInfo[eyeIndex].wink) == LOW) )) {
 | |
|         // Don't advance state yet -- eye is held closed instead
 | |
|       } else { // No buttons, or other state...
 | |
|         if (++eye[eyeIndex].blink.state > DEBLINK) { // Deblinking finished?
 | |
|           eye[eyeIndex].blink.state = NOBLINK;      // No longer blinking
 | |
|         } else { // Advancing from ENBLINK to DEBLINK mode
 | |
|           eye[eyeIndex].blink.duration *= 2; // DEBLINK is 1/2 ENBLINK speed
 | |
|           eye[eyeIndex].blink.startTime = t;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   } else { // Not currently blinking...check buttons!
 | |
| #if defined(BLINK_PIN) && (BLINK_PIN >= 0)
 | |
|     if (digitalRead(BLINK_PIN) == LOW) {
 | |
|       // Manually-initiated blinks have random durations like auto-blink
 | |
|       uint32_t blinkDuration = random(36000, 72000);
 | |
|       for (uint8_t e = 0; e < NUM_EYES; e++) {
 | |
|         if (eye[e].blink.state == NOBLINK) {
 | |
|           eye[e].blink.state     = ENBLINK;
 | |
|           eye[e].blink.startTime = t;
 | |
|           eye[e].blink.duration  = blinkDuration;
 | |
|         }
 | |
|       }
 | |
|     } else
 | |
| #endif
 | |
|       if ((eyeInfo[eyeIndex].wink >= 0) &&
 | |
|           (digitalRead(eyeInfo[eyeIndex].wink) == LOW)) { // Wink!
 | |
|         eye[eyeIndex].blink.state     = ENBLINK;
 | |
|         eye[eyeIndex].blink.startTime = t;
 | |
|         eye[eyeIndex].blink.duration  = random(45000, 90000);
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   // Process motion, blinking and iris scale into renderable values
 | |
| 
 | |
|   // Scale eye X/Y positions (0-1023) to pixel units used by drawEye()
 | |
|   eyeX = map(eyeX, 0, 1023, 0, SCLERA_WIDTH  - 128);
 | |
|   eyeY = map(eyeY, 0, 1023, 0, SCLERA_HEIGHT - 128);
 | |
| 
 | |
|   // Horizontal position is offset so that eyes are very slightly crossed
 | |
|   // to appear fixated (converged) at a conversational distance.  Number
 | |
|   // here was extracted from my posterior and not mathematically based.
 | |
|   // I suppose one could get all clever with a range sensor, but for now...
 | |
|   if (NUM_EYES > 1) {
 | |
|     if (eyeIndex == 1) eyeX += 4;
 | |
|     else eyeX -= 4;
 | |
|   }
 | |
|   if (eyeX > (SCLERA_WIDTH - 128)) eyeX = (SCLERA_WIDTH - 128);
 | |
| 
 | |
|   // Eyelids are rendered using a brightness threshold image.  This same
 | |
|   // map can be used to simplify another problem: making the upper eyelid
 | |
|   // track the pupil (eyes tend to open only as much as needed -- e.g. look
 | |
|   // down and the upper eyelid drops).  Just sample a point in the upper
 | |
|   // lid map slightly above the pupil to determine the rendering threshold.
 | |
|   static uint8_t uThreshold = 128;
 | |
|   uint8_t        lThreshold, n;
 | |
| #ifdef TRACKING
 | |
|   int16_t sampleX = SCLERA_WIDTH  / 2 - (eyeX / 2), // Reduce X influence
 | |
|           sampleY = SCLERA_HEIGHT / 2 - (eyeY + IRIS_HEIGHT / 4);
 | |
|   // Eyelid is slightly asymmetrical, so two readings are taken, averaged
 | |
|   if (sampleY < 0) n = 0;
 | |
|   else            n = (pgm_read_byte(upper + sampleY * SCREEN_WIDTH + sampleX) +
 | |
|                          pgm_read_byte(upper + sampleY * SCREEN_WIDTH + (SCREEN_WIDTH - 1 - sampleX))) / 2;
 | |
|   uThreshold = (uThreshold * 3 + n) / 4; // Filter/soften motion
 | |
|   // Lower eyelid doesn't track the same way, but seems to be pulled upward
 | |
|   // by tension from the upper lid.
 | |
|   lThreshold = 254 - uThreshold;
 | |
| #else // No tracking -- eyelids full open unless blink modifies them
 | |
|   uThreshold = lThreshold = 0;
 | |
| #endif
 | |
| 
 | |
|   // The upper/lower thresholds are then scaled relative to the current
 | |
|   // blink position so that blinks work together with pupil tracking.
 | |
|   if (eye[eyeIndex].blink.state) { // Eye currently blinking?
 | |
|     uint32_t s = (t - eye[eyeIndex].blink.startTime);
 | |
|     if (s >= eye[eyeIndex].blink.duration) s = 255;  // At or past blink end
 | |
|     else s = 255 * s / eye[eyeIndex].blink.duration; // Mid-blink
 | |
|     s          = (eye[eyeIndex].blink.state == DEBLINK) ? 1 + s : 256 - s;
 | |
|     n          = (uThreshold * s + 254 * (257 - s)) / 256;
 | |
|     lThreshold = (lThreshold * s + 254 * (257 - s)) / 256;
 | |
|   } else {
 | |
|     n          = uThreshold;
 | |
|   }
 | |
| 
 | |
|   // Pass all the derived values to the eye-rendering function:
 | |
|   drawEye(eyeIndex, iScale, eyeX, eyeY, n, lThreshold);
 | |
| 
 | |
|   if (eyeIndex == (NUM_EYES - 1)) {
 | |
|     user_loop(); // Call user code after rendering last eye
 | |
|   }
 | |
| }
 | |
| 
 | |
| // AUTONOMOUS IRIS SCALING (if no photocell or dial) -----------------------
 | |
| 
 | |
| #if !defined(LIGHT_PIN) || (LIGHT_PIN < 0)
 | |
| 
 | |
| // Autonomous iris motion uses a fractal behavior to similate both the major
 | |
| // reaction of the eye plus the continuous smaller adjustments that occur.
 | |
| 
 | |
| void split( // Subdivides motion path into two sub-paths w/randimization
 | |
|   int16_t  startValue, // Iris scale value (IRIS_MIN to IRIS_MAX) at start
 | |
|   int16_t  endValue,   // Iris scale value at end
 | |
|   uint32_t startTime,  // micros() at start
 | |
|   int32_t  duration,   // Start-to-end time, in microseconds
 | |
|   int16_t  range) {    // Allowable scale value variance when subdividing
 | |
| 
 | |
|   if (range >= 8) {    // Limit subdvision count, because recursion
 | |
|     range    /= 2;     // Split range & time in half for subdivision,
 | |
|     duration /= 2;     // then pick random center point within range:
 | |
|     int16_t  midValue = (startValue + endValue - range) / 2 + random(range);
 | |
|     uint32_t midTime  = startTime + duration;
 | |
|     split(startValue, midValue, startTime, duration, range); // First half
 | |
|     split(midValue  , endValue, midTime  , duration, range); // Second half
 | |
|   } else {             // No more subdivisons, do iris motion...
 | |
|     int32_t dt;        // Time (micros) since start of motion
 | |
|     int16_t v;         // Interim value
 | |
|     while ((dt = (micros() - startTime)) < duration) {
 | |
|       v = startValue + (((endValue - startValue) * dt) / duration);
 | |
|       if (v < IRIS_MIN)      v = IRIS_MIN; // Clip just in case
 | |
|       else if (v > IRIS_MAX) v = IRIS_MAX;
 | |
|       frame(v);        // Draw frame w/interim iris scale value
 | |
|     }
 | |
|   }
 | |
| }
 | |
| #endif // !LIGHT_PIN
 |