TFT_eSPI/examples/Smooth Graphics/Smooth_Graphics_Demo/Smooth_Graphics_Demo.ino

182 lines
5.2 KiB
C++

// Sketch to demonstrate smooth (anti-aliased) graphics funtions:
// Smooth graphics result in less pixel resolution jaggedness.
#include <TFT_eSPI.h> // Master copy here: https://github.com/Bodmer/TFT_eSPI
TFT_eSPI tft = TFT_eSPI(); // Invoke library, pins defined in User_Setup.h
TFT_eSprite spr = TFT_eSprite(&tft);
// =========================================================================
// Setup
// =========================================================================
void setup() {
Serial.begin(115200);
Serial.println("Booting...");
// Initialise the screen
tft.init();
// Ideally set orientation for good viewing angle range because
// the anti-aliasing effectiveness varies with screen viewing angle
tft.setRotation(0);
tft.fillScreen(TFT_BLACK);
// Small sprite for spot demo
spr.createSprite(23, 23);
}
// =========================================================================
// Loop
// =========================================================================
void loop() {
// drawSpot is for small anti-aliased circles, coordinates and radius are
// floating point to allow sub-pixel positioning (large circles will
// be slow to draw). Use fillSmoothCircle() for large circles.
// In this case black is the backgorund colour for the anti-aliasing
float x = 10.5;
float y = 10.5;
float r = 8.6;
tft.drawSpot(x, y, r, TFT_WHITE, TFT_BLACK);
// Fill sprite with a colour
spr.fillSprite(TFT_RED);
// Draw spot in sprite, the backgorund colour is ommitted so function
// reads background colour for aliasing. (To use this method with direct write
// to TFT (tft.drawSpot...) requires the capability to read data from the TFT!)
spr.drawSpot(x, y, r, TFT_WHITE);
spr.pushSprite(21, 0);
// Draw a segmented ring meter type display
// Centre of screen
int cx = tft.width() / 2;
int cy = tft.height() / 2;
// Inner and outer radius of ring
float r1 = min(cx, cy) - 40.0;
float r2 = min(cx, cy) - 10.0;
// Inner and outer line width
int w1 = r1 / 25;
int w2 = r2 / 20;
// The following will be updated by the getCoord function
float px1 = 0.0;
float py1 = 0.0;
float px2 = 0.0;
float py2 = 0.0;
// Wedge line function, an anti-aliased wide line between 2 points, with different
// line widths at the two ends. Background colour is black.
for (int angle = -130; angle <= 130; angle += 10) {
getCoord(cx, cy, &px1, &py1, &px2, &py2, r1, r2, angle);
uint16_t colour = rainbow(map(angle, -130, 130, 0, 127));
if (angle > 45) colour = TFT_DARKGREY;
tft.drawWedgeLine(px1, py1, px2, py2, w1, w2, colour, TFT_BLACK);
}
// Smooth dark red filled circle
tft.fillSmoothCircle(cx, cy, r1 - 8, TFT_MAROON, TFT_BLACK);
// Draw a white dial pointer using wedge line function
getCoord(cx, cy, &px1, &py1, &px2, &py2, 0, r1 - 10, 45);
// Magenta wedge line pointer on red background
// Line tapers from radius 5 to zero
tft.drawWedgeLine(cx, cy, px2, py2, 5, 0, TFT_WHITE, TFT_MAROON);
delay(5000);
// Test wideLine function
tft.fillScreen(TFT_BLACK);
// Line width
int wd = 5;
// Screen limits
int w = tft.width() - wd;
int h = tft.height() - wd;
// Line end coords
int x1 = w - 1;
int x2 = w - 1;
int y1 = h - 1;
int y2 = wd;
for (x2 = wd; x2 < w; x2 += wd * 3) tft.drawWideLine(x1, y1, x2, y2, wd, TFT_WHITE, TFT_BLACK);
x2 = wd;
for (y2 = wd; y2 < h; y2 += wd * 4) tft.drawWideLine(x1, y1, x2, y2, wd, TFT_WHITE, TFT_BLACK);
delay(5000);
// Demo filled smooth rounded rectangle
tft.fillScreen(TFT_BLACK);
x1 = 30;
y1 = 30;
w = tft.width() - 2 * x1;
h = tft.height() - 2 * y1;
int rad = 30;
tft.fillSmoothRoundRect(x1, y1, w, h, rad, TFT_CYAN, TFT_BLACK);
// Wait forever
while (1) delay(100);
}
// =========================================================================
// Get coordinates of two ends of a line from r1 to r2, pivot at x,y, angle a
// =========================================================================
// Coordinates are returned to caller via the xp and yp pointers
#define DEG2RAD 0.0174532925
void getCoord(int16_t x, int16_t y, float *xp1, float *yp1, float *xp2, float *yp2, int16_t r1, int16_t r2, float a)
{
float sx = cos( (a - 90) * DEG2RAD);
float sy = sin( (a - 90) * DEG2RAD);
*xp1 = sx * r1 + x;
*yp1 = sy * r1 + y;
*xp2 = sx * r2 + x;
*yp2 = sy * r2 + y;
}
// =========================================================================
// Return a 16 bit rainbow colour
// =========================================================================
unsigned int rainbow(byte value)
{
// Value is expected to be in range 0-127
// The value is converted to a spectrum colour from 0 = blue through to 127 = red
byte red = 0; // Red is the top 5 bits of a 16 bit colour value
byte green = 0;// Green is the middle 6 bits
byte blue = 0; // Blue is the bottom 5 bits
byte quadrant = value / 32;
if (quadrant == 0) {
blue = 31;
green = 2 * (value % 32);
red = 0;
}
if (quadrant == 1) {
blue = 31 - (value % 32);
green = 63;
red = 0;
}
if (quadrant == 2) {
blue = 0;
green = 63;
red = value % 32;
}
if (quadrant == 3) {
blue = 0;
green = 63 - 2 * (value % 32);
red = 31;
}
return (red << 11) + (green << 5) + blue;
}